【題目】如圖所示,一動點從半徑為2的⊙O上的A0點出發(fā),沿著射線A0O方向運動到⊙O上的點A1處,再向左沿著與射線A1O夾角為60°的方向運動到⊙O上的點A2處;接著又從A2點出發(fā),沿著射線A2O方向運動到⊙O上的點A3處,再向左沿著與射線A3O夾角為60°的方向運動到⊙O上的點A4處;…按此規(guī)律運動到點A2018處,則點A2018與點A0間的距離是( )
A. 0 B. 2 C. D. 4
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=x+3與x軸、y軸分別相交于A、C兩點,過點B(6,0),E(0,﹣6)的直線上有一點P,滿足∠PCA=135°.
(1)求證:四邊形ACPB是平行四邊形;
(2)求直線BE的解析式及點P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線滿足條件:(1)在時, 隨的增大而增大,在時, 隨的增大而減。唬2)與軸有兩個交點,且兩個交點間的距離小于.以下四個結(jié)論:①;②;③;④,說法正確的個數(shù)有( )個
A. 4 B. 3 C. 2 D. 1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xoy中,A(-1,5)、B(-1,0),C(-4,3).
(1)△ABC的面積是 .
(2)在下圖中畫出△ABC向下平移2個單位,向右平移5個單位后的△A1B1C1.
(3)寫出點A1、B1、C1的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平行四邊形ABCD的對角線AC、BD相交于點O,∠ABC=60°,點E是AB的中點,連接CE、OE,若AB=2BC,下列結(jié)論:①∠ACD=30°;②當(dāng)BC=4時,BD=;③CD=4OE;④S△COE=S四邊形ABCD.其中正確的個數(shù)有( )
A.1B.2C.3D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下圖的轉(zhuǎn)盤被劃分成六個相同大小的扇形,并分別標(biāo)上1,2,3,4,5,6這六個數(shù)字,指針停在每個扇形的可能性相等。四位同學(xué)各自發(fā)表了下述見解:
甲:如果指針前三次都停在了3號扇形,下次就一定不會停在3號扇形;
乙:只要指針連續(xù)轉(zhuǎn)六次,一定會有一次停在6號扇形;
丙:指針停在奇數(shù)號扇形的概率與停在偶數(shù)號扇形的概率相等;
丁:運氣好的時候,只要在轉(zhuǎn)動前默默想好讓指針停在6號扇形,指針停在6號扇形的可能性就會加大。
其中,你認為正確的見解有( )
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知∠1=∠3,CD∥EF,試說明∠1=∠4.請將過程填寫完整.
解:∵∠1=∠3,
又∠2=∠3(_______),
∴∠1=____,
∴______∥______(_______),
又∵CD∥EF,
∴AB∥_____,
∴∠1=∠4(兩直線平行,同位角相等).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(題文)如圖,直線AB,CD相交于點O,OE⊥CD于點O,OD平分∠BOF,∠BOE=50,
求∠AOC,∠AOF,∠EOF的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,在△ABC中,AC=BC,∠ACB=90°,過點C作CD⊥AB于點D,點E是AB邊上一動點(不含端點A,B),連接CE,過點B作CE的垂線交直線CE于點F,交直線CD于點G.
(1)求證:AE=CG;
(2)若點E運動到線段BD上時(如圖②),試猜想AE,CG的數(shù)量關(guān)系是否發(fā)生變化,請證明你的結(jié)論;
(3)過點A作AH⊥CE,垂足為點H,并交CD的延長線于點M(如圖③),找出圖中與BE相等的線段,直接寫出答案BE=
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com