【題目】如圖,平行四邊形ABCD的對(duì)角線ACBD相交于點(diǎn)O∠ABC=60°,點(diǎn)EAB的中點(diǎn),連接CE、OE,若AB=2BC,下列結(jié)論:①∠ACD=30°;當(dāng)BC=4時(shí),BD=③CD=4OE;④SCOE=S四邊形ABCD.其中正確的個(gè)數(shù)有( 。

A.1B.2C.3D.4

【答案】C

【解析】

根據(jù)∠ABC=60°,點(diǎn)EAB的中點(diǎn),且AB=2BC判斷出是等邊三角形,從而得出,判斷

過(guò)點(diǎn)BDCH,計(jì)算長(zhǎng)度,再根據(jù)勾股定理計(jì)算判斷;

根據(jù)EO分別為AB,BD的中點(diǎn)利用中位線定理和AB=2BC判斷;

通過(guò)中位線定理得出相似以及線段等量關(guān)系從而得出面積的關(guān)系判斷

∵∠ABC=60°,點(diǎn)EAB的中點(diǎn),且AB=2BC

是等邊三角形,

,①正確;

過(guò)點(diǎn)BDCH如圖:

∵BC=4,

,②正確;

∵E,O分別為AB,BD的中點(diǎn)

,③正確;

∵OE為三角形ABC的中位線

設(shè)三角形EOM的面積為S,則三角形MOC面積為2S,三角形MBC面積為4S,三角形EMB面積為2S

三角形ABC面積為12S

平行四邊形ABCD面積為24S

∴SCOE=S四邊形ABCD 錯(cuò)誤

故答案選:C

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)P是正方形ABCD內(nèi)一點(diǎn),點(diǎn)P到點(diǎn)ABD的距離分別為1,2,.△ADP沿點(diǎn)A旋轉(zhuǎn)至ABP,連接PP,并延長(zhǎng)APBC相交于點(diǎn)Q.

(1)求證:APP是等腰直角三角形;

(2)BPQ的大。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】6分)小聰是個(gè)數(shù)學(xué)愛(ài)好者,他發(fā)現(xiàn)從1開(kāi)始,連續(xù)幾個(gè)奇數(shù)相加,和的變化規(guī)律如右表所示:

加數(shù)個(gè)數(shù)

連續(xù)奇數(shù)的和S

1

1=

2

1+3=22

3

1+3+5=32

4

1+3+5+7=42

5

1+3+5+7+9=52

n

1)如果n=7,則S的值為 ;

2)求1+3+5+7+…+199的值;

3)求13+15+17+…+79的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知ABC的面積為24,點(diǎn)D在線段AC上,點(diǎn)D在線段BC的延長(zhǎng)線上,且BF=4CF,四邊形DCFE是平行四邊形,則圖中陰影部分的面積是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABCD中,對(duì)角線AC、BD相交于點(diǎn)OABAC,AB3cmBC5cm.點(diǎn)PA點(diǎn)出發(fā)沿AD方向勻速運(yùn)動(dòng),速度為1cm/s.連結(jié)PO并延長(zhǎng)交BC于點(diǎn)Q,設(shè)運(yùn)動(dòng)時(shí)間為t(0t5)

(1)當(dāng)t為何值時(shí),四邊形ABQP是平行四邊形?

(2)設(shè)四邊形OQCD的面積為y(cm2),求yt之間的函數(shù)關(guān)系式;

(3)是否存在某一時(shí)刻t,使點(diǎn)O在線段AP的垂直平分線上?若存在,求出t的值;若不存在,請(qǐng)說(shuō)明理由.

  備用圖

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,一動(dòng)點(diǎn)從半徑為2的⊙O上的A0點(diǎn)出發(fā),沿著射線A0O方向運(yùn)動(dòng)到⊙O上的點(diǎn)A1處,再向左沿著與射線A1O夾角為60°的方向運(yùn)動(dòng)到⊙O上的點(diǎn)A2處;接著又從A2點(diǎn)出發(fā),沿著射線A2O方向運(yùn)動(dòng)到⊙O上的點(diǎn)A3處,再向左沿著與射線A3O夾角為60°的方向運(yùn)動(dòng)到⊙O上的點(diǎn)A4處;按此規(guī)律運(yùn)動(dòng)到點(diǎn)A2018處,則點(diǎn)A2018與點(diǎn)A0間的距離是( 。

A. 0 B. 2 C. D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】填空完成下列推理過(guò)程

已知:如圖,BDAC,EFAC,點(diǎn)D、F分別是垂足,∠1=∠4

試說(shuō)明:∠ADG=∠C

解:∵BDACEFAC(已知)

∴∠290°390°(垂直的定義)

∴∠2=∠3(等量代換)

BDEF   

∴∠4=∠5(兩直線平行同位角相等)

∵∠1=∠4(已知)

1=∠5   

DGCB(內(nèi)錯(cuò)角相等兩直線平行)

∴∠ADG=∠C   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知ABCD.

(1)如圖①,若∠ABE30°,∠BEC148°,求∠ECD的度數(shù);

(2)如圖②,若CFEBCF平分∠ECD,試探究∠ECD與∠ABE之間的數(shù)量關(guān)系,并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為保護(hù)環(huán)境,我市公交公司計(jì)劃購(gòu)買(mǎi)A型和B型兩種環(huán)保節(jié)能公交車(chē)共10輛.若購(gòu)買(mǎi)A型公交車(chē)1輛,B型公交車(chē)2輛,共需400萬(wàn)元;若購(gòu)買(mǎi)A型公交車(chē)2輛,B型公交車(chē)1輛,共需350萬(wàn)元.

(1)求購(gòu)買(mǎi)A型和B型公交車(chē)每輛各需多少萬(wàn)元?

(2)預(yù)計(jì)在某線路上A型和B型公交車(chē)每輛年均載客量分別為60萬(wàn)人次和100萬(wàn)人次.若該公司購(gòu)買(mǎi)A型和B型公交車(chē)的總費(fèi)用不超過(guò)1200萬(wàn)元,且確保這10輛公交車(chē)在該線路的年均載客總和不少于680萬(wàn)人次,則該公司有哪幾種購(gòu)車(chē)方案?

(3)在(2)的條件下,哪種購(gòu)車(chē)方案總費(fèi)用最少?最少總費(fèi)用是多少萬(wàn)元?

查看答案和解析>>

同步練習(xí)冊(cè)答案