【題目】如圖,AB是⊙O的直徑,且AB=4,點C在半徑OA上(點C與點O、A不重合),過點CAB的垂線交⊙O于點D,連接OD,過點BOD的平行線交⊙O于點E,交CD的延長線于點F.

(1)若∠F=30°,請證明E 的中點;

(2)若AC=,求BEEF的值.

【答案】(1)證明見解析;(2)BEEF=5.

【解析】

(1)連接OE,如圖1所示,根據(jù)已知條件易證△OBE為等邊三角形,即可得∠OEB=BOE=60°.又因ODBF,根據(jù)平行線的性質可得∠DOE=BEO=BOE=60°,即可得;(2)過點QOMBEM,如圖2所示,先證明△OBM≌△DOC,可得BE=2OC=3;再證明△COD∽△CBF,根據(jù)相似三角形的性質求得BF=,即可得EF=BF﹣BE=所以BEEF=3×=5.

(1)證明:連接OE,如圖1所示.

CFAB,

∴∠FCB=90°.

∵∠F=30°,

∴∠OBE=60°.

OB=OE,

∴△OBE為等邊三角形,

∴∠OEB=BOE=60°.

ODBF,

∴∠DOE=BEO=BOE=60°,

=

(2)過點QOMBEM,如圖2所示.

OB=OE,

BE=2BM.

ODBF,

∴∠COD=B.

在△OBM和△DOC中,,

∴△OBM≌△DOC(AAS),

BM=OC=2﹣=,

BE=2OC=3.

ODBF,

∴△COD∽△CBF,

=,即=,

BF=,

EF=BF﹣BE=﹣3=,

BEEF=3×=5.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】在大課間活動中,同學們積極參加體育鍛煉,小龍在全校隨機抽取了一部分同學就“我最喜愛的體育項目”進行了一次調查(每位同學必選且只選一項).下面是他通過收集的數(shù)據(jù)繪制的兩幅不完整的統(tǒng)計圖,請你根據(jù)圖中提供的信息,解答以下問題:

(1)小龍一共抽取了   名學生.

(2)補全條形統(tǒng)計圖;

(3)求“其他”部分對應的扇形圓心角的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙二人從學校出發(fā)去科技館,甲步行一段時間后,乙騎自行車沿相同路線行進,兩人均勻速前行,他們的路程差S(米)與甲出發(fā)時間t(分)之間的函數(shù)關系如圖所示.下列說法:①乙先到達科技館;②乙的速度是甲速度的2.5倍;③b480;④a24.其中,正確的是 ______(填序號).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在邊長為1個單位長度的小正方形組成的網(wǎng)格中,給出了格點△ABC(頂點是網(wǎng)格線的交點),在建立的平面直角坐標系中,△ABC繞旋轉中心P逆時針旋轉90°后得到△A1B1C1

(1)在圖中標示出旋轉中心P,并寫出它的坐標;

(2)以原點O為位似中心,將△A1B1C1作位似變換且放大到原來的兩倍,得到△A2B2C2,在圖中畫出△A2B2C2,并寫出C2的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知正比例函數(shù)y=2x與反比例函數(shù)y=(k>0)的圖象交于A、B兩點,且點A的橫坐標為4,

(1)求k的值;

(2)根據(jù)圖象直接寫出正比例函數(shù)值小于反比例函數(shù)值時x的取值范圍;

(3)過原點O的另一條直線l交雙曲線y=(k>0)于P、Q兩點(P點在第一象限),若由點A、P、B、Q為頂點組成的四邊形面積為224,求點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,以點M(6,8)為圓心,2為半徑的圓上有一動點P,若A(﹣2,0),B(2,0),連接PA,PB,則當PA2+PB2取得最大值時,PO的長度為( 。

A. 8 B. 10 C. 12 D. 10

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校為了解學生“自主學習、合作交流” 的情況,對某班部分同學進行了一段時間的跟蹤調查,將調查結果(A:特別好;B:好;C:一般;D:較差)繪制成以下兩幅不完整的統(tǒng)計圖.請根據(jù)圖中提供的信息,解答下列問題:

(1)補全條形統(tǒng)計圖;

(2)扇形統(tǒng)計圖中,求類所占圓心角的度數(shù);

(3)學校想從被調查的類(1名男生2名女生)和D類(男女生各占一半)中分別選取一位同學進行“一幫一”互助學習,請用畫樹形圖或列表的方法求所選的兩位同學恰好是一男一女的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC中,B=C=65°BD=CE,BE=CF,若A=50°,則DEF的度數(shù)是(  )

A.

B.

C.

D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD中,∠B90°,AB2,BC1,CD2,AD3,連接AC

1)求AC的長;

2)判斷三角形ACD的形狀,并求出四邊形ABCD的面積.

查看答案和解析>>

同步練習冊答案