【題目】在平面直角坐標(biāo)系中,△ABC的三個(gè)頂點(diǎn)的位置如圖所示
(1)請(qǐng)畫出△ABC關(guān)于y軸對(duì)稱的△A′B′C′;(其中A′、B′、C′分別是A、B、C的對(duì)應(yīng)點(diǎn),不寫畫法)
(2)直接寫出A′B′C′三點(diǎn)的坐標(biāo);
(3)求△ABC的面積.
【答案】(1)見解析;(2)A′(2,3),B′(3,1),C′(﹣1,﹣2);(3)5.5.
【解析】
(1)利用關(guān)于y軸對(duì)稱的點(diǎn)的坐標(biāo)特征找到A′,B′,C′三點(diǎn)的位置,然后順次連結(jié)即可;
(2)根據(jù)A′,B′,C′三點(diǎn)的位置直接寫出坐標(biāo)即可;
(3)用△ABC所在矩形的面積減去周圍三個(gè)三角形的面積去計(jì)算即可.
解:(1)如圖,△A′B′C′;
(2)A′(2,3),B′(3,1),C′(﹣1,﹣2);
(3)△ABC的面積=4×5﹣×3×4﹣×2×1﹣×5×3=5.5.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知直角三角板和直角三角板,,,.
(1)如圖1,將頂點(diǎn)和頂點(diǎn)重合,保持三角板不動(dòng),將三角板繞點(diǎn)旋轉(zhuǎn),當(dāng)平分時(shí),求的度數(shù);
(2)在(1)的條件下,繼續(xù)旋轉(zhuǎn)三角板,猜想與有怎樣的數(shù)量關(guān)系?并利用圖2所給的情形說明理由;
(3)如圖3,將頂點(diǎn)和頂點(diǎn)重合,保持三角板不動(dòng),將三角板繞點(diǎn)旋轉(zhuǎn).當(dāng)落在內(nèi)部時(shí),直接寫出與之間的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線y=﹣x+4與兩坐標(biāo)軸分別相交于點(diǎn)A,B兩點(diǎn),點(diǎn)C是線段AB上任意一點(diǎn),過C分別作CD⊥x軸于點(diǎn)D,CE⊥y軸于點(diǎn)E.雙曲線y=與CD,CE分別交于點(diǎn)P,Q兩點(diǎn),若四邊形ODCE為正方形,且,則k的值是( )
A. 4 B. 2 C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD內(nèi)接于⊙O,BD是⊙O的直徑,AE⊥CD于點(diǎn)E,DA平分∠BDE.
(1)求證:AE是⊙O的切線;
(2)如果AB=4,AE=2,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,∠A,∠B,∠C的對(duì)邊分別是a,b,c,則滿足下列條件的一定是直角三角形的是( 。
A. ∠A:∠B:∠C=3:4:5B. a:b:c=1::3
C. a=7,b=24,c=25D. a=32,b=42,c=52
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校為了開展“陽光體育運(yùn)動(dòng)”,計(jì)劃購買籃球與足球共個(gè),已知每個(gè)籃球的價(jià)格為元,每個(gè)足球的價(jià)格為元
(1)若購買這兩類球的總金額為元,求籃球和足球各購買了多少個(gè)?
(2)元旦期間,商家給出藍(lán)球打九折,足球打八五折的優(yōu)惠價(jià),若購買這種籃球與足球各個(gè),那么購買這兩類球一共需要多少錢?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題提出:
某校要舉辦足球賽,若有5支球隊(duì)進(jìn)行單循環(huán)比賽(即全部比賽過程中任何一隊(duì)都要分別與其他各隊(duì)比賽一場且只比賽一場),則該校一共要安排多少場比賽?
構(gòu)建模型:
生活中的許多實(shí)際問題,往往需要構(gòu)建相應(yīng)的數(shù)學(xué)模型,利用模型的思想來解決問題.
為解決上述問題,我們構(gòu)建如下數(shù)學(xué)模型:
(1)如圖①,我們可以在平面內(nèi)畫出5個(gè)點(diǎn)(任意3個(gè)點(diǎn)都不在同一條直線上),其中每個(gè)點(diǎn)各代表一支足球隊(duì),兩支球隊(duì)之間比賽一場就用一條線段把他們連接起來.由于每支球隊(duì)都要與其他各隊(duì)比賽一場,即每個(gè)點(diǎn)與另外4個(gè)點(diǎn)都可連成一條線段,這樣一共連成5×4條線段,而每兩個(gè)點(diǎn)之間的線段都重復(fù)計(jì)算了一次,實(shí)際只有 條線段,所以該校一共要安排 場比賽.
(2)若學(xué)校有6支足球隊(duì)進(jìn)行單循環(huán)比賽,借助圖②,我們可知該校一共要安排__________場比賽;
…………
(3)根據(jù)以上規(guī)律,若學(xué)校有n支足球隊(duì)進(jìn)行單循環(huán)比賽,則該校一共要安排___________場比賽.
實(shí)際應(yīng)用:
(4)9月1日開學(xué)時(shí),老師為了讓全班新同學(xué)互相認(rèn)識(shí),請(qǐng)班上42位新同學(xué)每兩個(gè)人都相互握一次手,全班同學(xué)總共握手________________次.
拓展提高:
(5)往返于青島和濟(jì)南的同一輛高速列車,中途經(jīng)青島北站、濰坊、青州、淄博4個(gè)車站(每種車票票面都印有上車站名稱與下車站名稱),那么在這段線路上往返行車,要準(zhǔn)備車票的種數(shù)為__________種.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在Rt△ABC中,∠ACB=90°,以點(diǎn)A為圓心,AC為半徑,作⊙A交AB于點(diǎn)D,交CA的延長線于點(diǎn)E,過點(diǎn)E作AB的平行線EF交⊙A于點(diǎn)F,連接AF、BF、DF
(1)求證:BF是⊙A的切線.
(2)當(dāng)∠CAB等于多少度時(shí),四邊形ADFE為菱形?請(qǐng)給予證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖:已知,對(duì)應(yīng)的坐標(biāo)如下,請(qǐng)利用學(xué)過的變換(平移、旋轉(zhuǎn)、軸對(duì)稱)知識(shí)經(jīng)過若干次圖形變化,使得點(diǎn)A與點(diǎn)E重合、點(diǎn)B與點(diǎn)D重合,寫出一種變化的過程_____.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com