【題目】(1)如圖1,,求的度數(shù). (提示:作).
(2)如圖2,,當(dāng)點(diǎn)在線段上運(yùn)動(dòng)時(shí),,求與、之間的數(shù)量關(guān)系,并說明理由.
(3)在(2)的條件下,如果點(diǎn)在射線上運(yùn)動(dòng),請(qǐng)你直接寫出與、之間的數(shù)量關(guān)系.
【答案】(1)73°;(2),理由詳見解析;(3)
【解析】
(1)過點(diǎn)P作PE∥AB,通過平行線性質(zhì)來求∠APC.
(2)過P作PE∥AD交AC于E,推出AB∥PE∥DC,根據(jù)平行線的性質(zhì)得出∠α=∠APE,∠β=∠CPE,即可得出答案;
(3)若P在DB延長(zhǎng)線上,畫出圖形,根據(jù)平行線的性質(zhì)得出∠α=∠APE,∠β=∠CPE,依據(jù)角的和差關(guān)系即可得出答案.
(1)如圖1,過作
∵
∴,
∴
又∵
∴,
則
(2)
理由是:如圖2,過點(diǎn)作交于點(diǎn)
∵
∴,
∴
∴
(3)
如圖3,過P作PE∥AB,交AC于E,
∵AB∥CD,
∴AB∥PE∥CD,
∴∠PAB=∠APE=∠α,∠PCD=∠CPE=∠β,
∵∠APC=∠APE-∠CPE,
∴∠APC=∠α-∠β.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一個(gè)不透明的袋子中裝著5個(gè)完全相同的小球,分別標(biāo)有數(shù)字0,1,,2,-1,-2,從袋中隨機(jī)取出一個(gè)小球。
(1)隨機(jī)地從布袋中摸出一個(gè)小球,則摸出的球上數(shù)字為正數(shù)的概率為
(2)若第一次從布袋中隨機(jī)摸出一個(gè)小球,設(shè)記下的數(shù)字為x,再將此球放回盒中,第二次再?gòu)牟即须S機(jī)抽取一張,設(shè)記下的數(shù)字為y,記M(x,y),請(qǐng)用畫樹狀圖或列表法列舉出點(diǎn)M所有可能的坐標(biāo),并求點(diǎn)M位于第二象限的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某養(yǎng)殖戶每年的養(yǎng)殖成本包括固定成本和可變成本,其中固定成本每年均為3萬元,可變成本逐年增長(zhǎng),已知該養(yǎng)殖戶第1年的可變成本為2.4萬元,設(shè)可變成本平均每年增長(zhǎng)的百分率為x.
(1)用含x的代數(shù)式表示第3年的可變成本為萬元.
(2)如果該養(yǎng)殖戶第3年的養(yǎng)殖成本為6.456萬元,求可變成本平均每年增長(zhǎng)的百分率?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,PA切⊙O于A,AB⊥OP于B,若PO=8 cm,BO=2 cm,則PA的長(zhǎng)為( )
A.16cm
B.48cm
C.6 cm
D.4 cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,長(zhǎng)方形紙片ABCD的長(zhǎng)AD=9cm,寬AB=3cm,將其折疊,使點(diǎn)D與點(diǎn)B重合.
求:(1)折疊后DE的長(zhǎng);(2)以折痕EF為邊的正方形面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一架長(zhǎng)2.5米的梯子AB如圖所示斜靠在一面墻上,這時(shí)梯足B離墻底C(∠C=90°)的距離BC為0.7米.
(1)求此時(shí)梯頂A距地面的高度AC;
(2)如果梯頂A下滑0.9米,那么梯足B在水平方向,向右滑動(dòng)了多少米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,如圖,在ABCD中,BF平分∠ABC交AD于點(diǎn)F,AE⊥BF于點(diǎn)O,交BC于點(diǎn)E,連接EF.
(1)求證:四邊形ABEF是菱形:
(2)若菱形ABEF的周長(zhǎng)為16,∠BEF=120°,求AE的大。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com