【題目】如圖所示,△ABC是圓O的內接三角形,過點O作OD⊥AB與點D,連接OA,點E是AC的中點,延長EO交BC于點F.
(1)求證:△CEF∽△ODA.
(2)若,△ABC是不是等腰三角形?并說明理由.
【答案】(1)見解析;(2)是,證明見解析.
【解析】
(1)利用圓周角定理可知∠ECF=∠AOB,再由垂徑定理得到∠AOD=∠AOB,從而證明∠ECF=∠AOD,再由垂徑定理可得∠ODA=∠CEF=90°,由此即可得出結論;
(2)由已知易證△OEC∽△CEF,從而可得∠ECF=∠EOC,再根據圓周角定理證明∠EOC=∠CBA,從而可得∠ECF=∠CBA,由等角對等邊即可得出結論.
證明:(1)連接OB,
∵,
∴∠ECF=∠AOB,
又∵OD⊥AB,OA=OB,
∴∠AOD=∠AOB,
∴∠ECF=∠AOD,
∵OD⊥AB ,
∴∠ODA=90°,
∵E為AC中點 ,
∴OE⊥AC,
∴∠CEF=90°,
∴△CEF∽△ODA.
(2)∵OE·EF=CE2,∠OEC=∠CEF,
∴△OEC∽△CEF,
∴∠ECF=∠EOC,
∵∠EOC=,∠CBA=
∴∠ECF=∠CBA,
∴△ABC是等腰三角形.
科目:初中數學 來源: 題型:
【題目】如圖,點C是⊙O的直徑AB延長線上一點,過⊙O上一點D作DF⊥AB于F,交⊙O于點E,點M是BE的中點,AB=4,∠E=∠C=30°.
(1)求證:CD是⊙O的切線;
(2)求DM的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】閱讀下面內容,并解決問題:
《名畫》中的數學
前蘇聯(lián)著名科學家別萊利曼在他所著的《趣味代數學》中介紹了波格達諾夫·別列斯基的《名畫》,畫上那位老師拉金斯基是一位自然科學教授,放棄了大學教席(教師職務)來到農村學校當一名普通老師.畫中,黑板上寫著一道式子,如圖所示:
從這道算式計算可以得出答案等于2,如果仔細一研究,10,11,12,13,14這幾個數具有一種有趣的特性: ,而且.
請解答以下問題:
(1)還有沒有其他像這樣五個連續(xù)的整數,前三個數的平方和正好等于后兩個數的平方和呢?如果有,請求出另外的五個連續(xù)的整數;
(2)若七個連續(xù)整數前四個數的平方和等于后三個數的平方和,請直接寫出符合條件的連續(xù)整數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(1)問題發(fā)現
如圖1,在△OAB和△OCD中,OA=OB,OC=OD,∠AOB=∠COD=40°,連接AC,BD交于點M.填空:
①的值為 ;
②∠AMB的度數為 .
(2)類比探究
如圖2,在△OAB和△OCD中,∠AOB=∠COD=90°,∠OAB=∠OCD=30°,連接AC交BD的延長線于點M.請判斷的值及∠AMB的度數,并說明理由;
(3)拓展延伸
在(2)的條件下,將△OCD繞點O在平面內旋轉,AC,BD所在直線交于點M,若OD=1,OB=,請直接寫出當點C與點M重合時AC的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,直線a∥b,∠1=40°,∠2=80°,則∠3的度數為( 。
[Failed to download image : http://192.168.0.10:8086/QBM/2020/6/15/2485292109684736/2491850430775296/STEM/0502255e02c3498e9234cb6eaef26eb9.png]
A.120°B.130°C.140°D.110°
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】甲、乙兩人在直線跑道上同起點、同終點、同方向勻速跑步500m,先到終點
的人原地休息.已知甲先出發(fā)2s.在跑步過程中,甲、乙兩人的距離y(m)與乙出發(fā)的時間t(s)之間的關系
如圖所示,給出以下結論:①a=8;②b=92;③c=123.其中正確的是【 】
A.①②③ B.僅有①② C.僅有①③ D.僅有②③
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】小明準備給長米,寬米的長方形空地栽種花卉和草坪,圖中I、II、III三個區(qū)域分別栽種甲、乙、丙三種花卉,其余區(qū)域栽種草坪.四邊形和均為正方形,且各有兩邊與長方形邊重合;矩形(區(qū)域II)是這兩個正方形的重疊部分,如圖所示.
(1)若花卉均價為元,種植花卉的面積為,草坪均價為元,且花卉和草坪栽種總價不超過元,求的最大值.
(2)若矩形滿足.
①求,的長.
②若甲、乙、丙三種花卉單價分別為元,元,元,且邊的長不小于邊長的倍.求圖中I、II、III三個區(qū)域栽種花卉總價的最大值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:如圖,在中,的角平分線交邊于.
(1)以邊上一點為圓心,過兩點作(不寫作法,保留作圖痕跡),再判斷直線與的位置關系,并說明理由;
(2)若(1)中的與邊的另一個交點為,,求線段與劣弧所圍成的圖形面積.(結果保留根號和)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,拋物線經過A(-1,0)B(4,0),C(0,4)三點.
(1)求拋物線的解析式及頂點D的坐標;
(2)將(1)中的拋物線向下平移個長度單位,再向左平移h(h>0)個長度單位,得到新拋物線.若新拋物線的頂點在△ABC內,求h的取值范圍;
(3)點P為線段BC上的一動點(點P不與點B,C重合),過點P作x軸的垂線交(1)中的拋物線于點Q,當△PQC與△ABC相似時,求△PQC的面積.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com