【題目】(1)問題發(fā)現(xiàn)
如圖1,在△OAB和△OCD中,OA=OB,OC=OD,∠AOB=∠COD=40°,連接AC,BD交于點M.填空:
①的值為 ;
②∠AMB的度數(shù)為 .
(2)類比探究
如圖2,在△OAB和△OCD中,∠AOB=∠COD=90°,∠OAB=∠OCD=30°,連接AC交BD的延長線于點M.請判斷的值及∠AMB的度數(shù),并說明理由;
(3)拓展延伸
在(2)的條件下,將△OCD繞點O在平面內(nèi)旋轉(zhuǎn),AC,BD所在直線交于點M,若OD=1,OB=,請直接寫出當(dāng)點C與點M重合時AC的長.
【答案】(1)①1;②40°;(2),90°;(3)AC的長為3或2.
【解析】
(1)①證明△COA≌△DOB(SAS),得AC=BD,比值為1;
②由△COA≌△DOB,得∠CAO=∠DBO,根據(jù)三角形的內(nèi)角和定理得:∠AMB=180°-(∠DBO+∠OAB+∠ABD)=180°-140°=40°;
(2)根據(jù)兩邊的比相等且夾角相等可得△AOC∽△BOD,則,由全等三角形的性質(zhì)得∠AMB的度數(shù);
(3)正確畫圖形,當(dāng)點C與點M重合時,有兩種情況:如圖3和4,同理可得:△AOC∽△BOD,則∠AMB=90°,,可得AC的長.
(1)問題發(fā)現(xiàn):
①如圖1,
∵∠AOB=∠COD=40°,
∴∠COA=∠DOB,
∵OC=OD,OA=OB,
∴△COA≌△DOB(SAS),
∴AC=BD,
∴
②∵△COA≌△DOB,
∴∠CAO=∠DBO,
∵∠AOB=40°,
∴∠OAB+∠ABO=140°,
在△AMB中,∠AMB=180°-(∠CAO+∠OAB+∠ABD)=180°-(∠DBO+∠OAB+∠ABD)=180°-140°=40°,
(2)類比探究:
如圖2,,∠AMB=90°,理由是:
Rt△COD中,∠DCO=30°,∠DOC=90°,
∴,
同理得:,
∴,
∵∠AOB=∠COD=90°,
∴∠AOC=∠BOD,
∴△AOC∽△BOD,
∴ ,∠CAO=∠DBO,
在△AMB中,∠AMB=180°-(∠MAB+∠ABM)=180°-(∠OAB+∠ABM+∠DBO)=90°;
(3)拓展延伸:
①點C與點M重合時,如圖3,
同理得:△AOC∽△BOD,
∴∠AMB=90°,,
設(shè)BD=x,則AC=x,
Rt△COD中,∠OCD=30°,OD=1,
∴CD=2,BC=x-2,
Rt△AOB中,∠OAB=30°,OB=,
∴AB=2OB=2,
在Rt△AMB中,由勾股定理得:AC2+BC2=AB2,
(x)2+(x2)2=(2)2,
x2-x-6=0,
(x-3)(x+2)=0,
x1=3,x2=-2,
∴AC=3;
②點C與點M重合時,如圖4,
同理得:∠AMB=90°,,
設(shè)BD=x,則AC=x,
在Rt△AMB中,由勾股定理得:AC2+BC2=AB2,
(x)2+(x+2)2=(2)2.
x2+x-6=0,
(x+3)(x-2)=0,
x1=-3,x2=2,
∴AC=2;.
綜上所述,AC的長為3或2.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1所示,A,B兩地相距60km,甲、乙分別從A,B兩地出發(fā),相向而行,圖2中的,分別表示甲、乙離B地的距離y(km)與甲出發(fā)后所用的時間x(h)的函數(shù)關(guān)系.以下結(jié)論正確的是( )
A.甲的速度為20km/h
B.甲和乙同時出發(fā)
C.甲出發(fā)1.4h時與乙相遇
D.乙出發(fā)3.5h時到達A地
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】尺規(guī)作圖要求: I、過直線外一點作這條直線的垂線: II、 作線段的垂直平分線;III、過直線上一點作這條直線的垂線: IV、 作角的平分線.如圖是按上述要求排亂順序的尺規(guī)作圖:
則正確的配對是( )
A.①-IV,②-II,③-I,④-IIIB.①-IV, ②-I,③-II,④-I
C.①-II,②-IV,③-1II,④-ID.①-IV,②-I,③-II,④-III
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線,直線,與相交于點,,分別與軸相交于點.
(1)求點P的坐標(biāo).
(2)若,求x的取值范圍.
(3)點為x軸上的一個動點,過作x軸的垂線分別交和于點,當(dāng)EF=3時,求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校隨機抽取部分學(xué)生,對“學(xué)習(xí)習(xí)慣”進行問卷調(diào)查.
設(shè)計的問題:對自己做錯的題目進行整理、分析、改正;
答案選項為:A:很少,B:有時,C:常常,D:總是;
將調(diào)查結(jié)果的數(shù)據(jù)進行了整理、繪制成部分統(tǒng)計圖如下:
請根據(jù)圖中信息,解答下列問題:
(1)該調(diào)查的樣本容量為 ,a= %,b= %,“常常”對應(yīng)扇形的圓心角為 ;
(2)請你補全條形統(tǒng)計圖;
(3)若該校有3200名學(xué)生,請你估計其中“常!焙汀翱偸恰睂﹀e題進行整理、分析、改正的學(xué)生各有多少名?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=ax2+bx+3(a<0)交x軸于A,B兩點(B在A左側(cè)),交y軸于點C,且CO=AO,分別以BC,AC為邊向外做正方形BCDE,正方形ACGH,記它們的面積分別為S1,S2,△ABC面積記為S3,當(dāng)S1+S2=6S3時,b的值為( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=3,BC=5,E是AD上的一個動點
(1)如圖 1,連接 BD,O 是對角線 BD 的中點,連接 OE.當(dāng) OE=DE 時,求 AE 的長;
(2)如圖 2,連接 BE,EC,過點 E 作 EF⊥EC 交 AB 于點 F,連接 CF,與 BE 交于點 G.當(dāng)BE 平分∠ABC 時,求 BG 的長;
(3)如圖 3,連接 EC,點 H 在 CD 上,將矩形 ABCD 沿直線 EH 折疊,折疊后點 D 落在 EC上的點 D′處,過點 D′作 D′N⊥AD 于點 N,與 EH 交于點 M,且 AE=1.的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等腰△ABC中,AB=AC=4,BC=6點D在底邊BC上,且∠DAC=∠ACD,將△ACD沿著AD所在直線翻折,使得點C落到點E處,聯(lián)結(jié)BE,那么BE的長為______.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com