【題目】中國是世界上13個貧水國家之一.某校有800名在校學(xué)生,學(xué)校為鼓勵學(xué)生節(jié)約用水,展開珍惜水資源,節(jié)約每一滴水系列教育活動.為響應(yīng)學(xué)校號召,數(shù)學(xué)小組做了如下調(diào)查:

小亮為了解一個擰不緊的水龍頭的滴水情況,記錄了滴水時間和燒杯中的水面高度,如圖1.小明設(shè)計了調(diào)查問卷,在學(xué)校隨機抽取一部分學(xué)生進行了問卷調(diào)查,并制作出統(tǒng)計圖.如圖2和圖3.

經(jīng)結(jié)合圖2和圖3回答下列問題:

(1)參加問卷調(diào)查的學(xué)生人數(shù)為   人,其中選C的人數(shù)占調(diào)查人數(shù)的百分比為   

(2)在這所學(xué)校中選比較注意,偶爾水龍頭滴水的大概有   人.若在該校隨機抽取一名學(xué)生,這名學(xué)生選B的概率為   

請結(jié)合圖1解答下列問題:

(3)在水龍頭滴水情況圖中,水龍頭滴水量(毫升)與時間(分)可以用我們學(xué)過的哪種函數(shù)表示?請求出函數(shù)關(guān)系式.

(4)為了維持生命,每人每天需要約2400毫升水,該校選C的學(xué)生因沒有擰緊水龍頭,2小時浪費的水可維持多少人一天的生命需要?

【答案】(1)60;10%(2)440;;(3)一次函數(shù),y=6t;(4)24.

【解析】

1)根據(jù)A的人數(shù)除以占的百分比求出調(diào)查總?cè)藬?shù);求出C占的百分比即可;

2)求出B占的百分比,乘以800得到結(jié)果;找出總?cè)藬?shù)中B的人數(shù),即可求出所求概率;

3)水龍頭滴水量(毫升)與時間(分)可以近似看做一次函數(shù),設(shè)為y=kx+b,把兩點坐標代入求出kb的值,即可確定出函數(shù)解析式;

4設(shè)可維持x人一天的生命需要,根據(jù)題意列出方程求出方程的解即可得到結(jié)果

1)根據(jù)題意得21÷35%=60(人),C的人數(shù)占調(diào)查人數(shù)的百分比為×100%=10%;

2)根據(jù)題意得比較注意,偶爾水龍頭滴水的大概有800×135%﹣10%)=440(人)

若在該校隨機抽取一名學(xué)生,這名學(xué)生選B的概率為=;

3)水龍頭滴水量(毫升)與時間(分)可以近似地用一次函數(shù)表示,設(shè)水龍頭滴水量y(毫升)與時間t(分)滿足關(guān)系式y=kt+b依題意得

解得,y=6t,經(jīng)檢驗其余各點也在函數(shù)圖象上,∴水龍頭滴水量y(毫升)與時間t(分)滿足關(guān)系式為y=6t

4設(shè)可維持x人一天的生命需要,依題意得

800×10%×2×60×6=2400x

解得x=24,則可維持24人一天的生命需要

故答案為:16010%;(2440;

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下面材料:

數(shù)學(xué)活動課上,老師出了一道作圖問題:如圖,已知直線l和直線l外一點P.用直尺和圓規(guī)作直線PQ,使PQ⊥l于點Q.”

小艾的作法如下:

(1)在直線l上任取點A,以A為圓心,AP長為半徑畫。

(2)在直線l上任取點B,以B為圓心,BP長為半徑畫弧.

(3)兩弧分別交于點P和點M

(4)連接PM,與直線l交于點Q,直線PQ即為所求.

老師表揚了小艾的作法是對的.

請回答:小艾這樣作圖的依據(jù)是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在梯形ABCD中,ADBC,ECD中點,連接AE并延長AEBC的延長線于點F

1)求證:CFAD.

2)若AD3,AB8,當BC為多少時,點B在線段AF的垂直平分線上,為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△DAC和△EBC均是等邊三角形,AEBD分別與CD、CE交于點M、N,且AC、B在同一直線上,有如下結(jié)論:①△ACE≌△DCB;②CMCN;③ACDN;④PC平分∠APB;⑤∠APD60°,其中正確結(jié)論有(

A.①②③④⑤B.①②④⑤C.①②③⑤D.①②⑤

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC是邊長為8等邊三角形,如圖所示,現(xiàn)有兩點M、N分別從點A、點B同時出發(fā),沿三角形的邊運動,已知點M的速度為每秒1個單位長度,點N的運度為每秒2個單位長度,當點M第一次到達B點時,M、N同時停止運動.

1)點M、N運動幾秒后,可得到等邊三角形?

2)點MN運動幾秒后,MN兩點重合?

3)當點M、NBC邊上運動時,能否得到以MN為底邊的等腰?如存在,請求出此時M、N運動的時間.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某批發(fā)門市銷售兩種商品,甲種商品每件售價為300元,乙種商品每件售價為80元.新年來臨之際,該門市為促銷制定了兩種優(yōu)惠方案:

方案一:買一件甲種商品就贈送一件乙種商品;

方案二:按購買金額打八折付款.

某公司為獎勵員工,購買了甲種商品20件,乙種商品x(x≥20)件.

(1)分別寫出優(yōu)惠方案一購買費用y1(元)、優(yōu)惠方案二購買費用y2元)與所買乙種商品x(件)之間的函數(shù)關(guān)系式;

(2)若該公司共需要甲種商品20件,乙種商品40件.設(shè)按照方案一的優(yōu)惠辦法購買了m件甲種商品,其余按方案二的優(yōu)惠辦法購買.請你寫出總費用wm之間的關(guān)系式;利用wm之間的關(guān)系式說明怎樣購買最實惠.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某縣實施村村通工程中,決定在A、B兩村之間修筑一條公路,甲、乙兩個工程隊分別從A、B兩村同時開始修筑,施工期間,乙隊因另有任務(wù)提前離開,余下的任務(wù)由甲隊單獨完成,直到道路修通,下圖是甲、乙兩個工程隊修道路長度y(米)與修筑時間x(天)之間的函數(shù)圖象,請根據(jù)圖象所提供的信息,解答下列問題:

1)寫出乙工程隊修道路的長度y與修筑時間x之間的函數(shù)關(guān)系式:_____;

2)甲工程隊前8天所修公路為_____米,該公路的總長度為_____米;

3)若乙工程隊不提前離開,則兩隊只需_____天就能完成任務(wù);

4)甲、乙兩工程隊第_____天時所修道路的長度相差80米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在圓O中,C是弦AB上的一點,聯(lián)結(jié)OC并延長,交劣弧AB于點D,聯(lián)結(jié)AO、BO、

AD、BD.已知圓O的半徑長為5,弦AB的長為8.

(1)如圖1,當點D是弧AB的中點時,求CD的長;

(2)如圖2,設(shè)AC=x,=y,求y關(guān)于x的函數(shù)解析式并寫出定義域;

(3)若四邊形AOBD是梯形,求AD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,由點P(14,1),A(,0),B(0,)(),確定的△PAB的面積為18,則的值為_________,如果,則的值為_____________________

查看答案和解析>>

同步練習(xí)冊答案