【題目】在圓O中,C是弦AB上的一點(diǎn),聯(lián)結(jié)OC并延長(zhǎng),交劣弧AB于點(diǎn)D,聯(lián)結(jié)AO、BO、
AD、BD.已知圓O的半徑長(zhǎng)為5,弦AB的長(zhǎng)為8.
(1)如圖1,當(dāng)點(diǎn)D是弧AB的中點(diǎn)時(shí),求CD的長(zhǎng);
(2)如圖2,設(shè)AC=x,=y,求y關(guān)于x的函數(shù)解析式并寫出定義域;
(3)若四邊形AOBD是梯形,求AD的長(zhǎng).
【答案】(1)2;(2)y=(0<x<8);(3)AD=或6.
【解析】
(1)根據(jù)垂徑定理和勾股定理可求出OC的長(zhǎng).
(2)分別作OH⊥AB,DG⊥AB,用含x的代數(shù)式表示△ACO和△BOD的面積,便可得出函數(shù)解析式.
(3)分OB∥AD和OA∥BD兩種情況討論.
解:(1)∵OD過圓心,點(diǎn)D是弧AB的中點(diǎn),AB=8,
∴OD⊥AB,AC=AB=4,
在Rt△AOC中,∵∠ACO=90°,AO=5,
∴CO==3,
∴OD=5,
∴CD=OD﹣OC=2;
(2)如圖2,過點(diǎn)O作OH⊥AB,垂足為點(diǎn)H,
則由(1)可得AH=4,OH=3,
∵AC=x,
∴CH=|x﹣4|,
在Rt△HOC中,∵∠CHO=90°,AO=5,
∴CO===,
∴CD=OD﹣OC=5﹣,
過點(diǎn)DG⊥AB于G,
∵OH⊥AB,
∴DG∥OH,
∴△OCH∽△DCG,
∴,
∴DG==,
∴S△ACO=AC×OH=x×3=x,
S△BOD=BC(OH+DG)=(8﹣x)×(3+)=(8﹣x)×
∴y===(0<x<8)
(3)①當(dāng)OB∥AD時(shí),如圖3,
過點(diǎn)A作AE⊥OB交BO延長(zhǎng)線于點(diǎn)E,過點(diǎn)O作OF⊥AD,垂足為點(diǎn)F,
則OF=AE,
∴S=ABOH=OBAE,
AE===OF,
在Rt△AOF中,∠AFO=90°,AO=5,
∴AF==
∵OF過圓心,OF⊥AD,
∴AD=2AF=.
②當(dāng)OA∥BD時(shí),如圖4,過點(diǎn)B作BM⊥OA交AO延長(zhǎng)線于點(diǎn)M,過點(diǎn)D作DG⊥AO,垂足為點(diǎn)G,
則由①的方法可得DG=BM=,
在Rt△GOD中,∠DGO=90°,DO=5,
∴GO==,AG=AO﹣GO=,
在Rt△GAD中,∠DGA=90°,
∴AD==6
綜上得AD=或6.
故答案為:(1)2;(2)y=(0<x<8);(3)AD=或6.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(12分)如圖,已知三角形ABC的邊AB是⊙O的切線,切點(diǎn)為B.AC經(jīng)過圓心O并與圓相交于點(diǎn)D、C,過C作直線CE丄AB,交AB的延長(zhǎng)線于點(diǎn)E.
(1)求證:CB平分∠ACE;
(2)若BE=3,CE=4,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】中國(guó)是世界上13個(gè)貧水國(guó)家之一.某校有800名在校學(xué)生,學(xué)校為鼓勵(lì)學(xué)生節(jié)約用水,展開“珍惜水資源,節(jié)約每一滴水”系列教育活動(dòng).為響應(yīng)學(xué)校號(hào)召,數(shù)學(xué)小組做了如下調(diào)查:
小亮為了解一個(gè)擰不緊的水龍頭的滴水情況,記錄了滴水時(shí)間和燒杯中的水面高度,如圖1.小明設(shè)計(jì)了調(diào)查問卷,在學(xué)校隨機(jī)抽取一部分學(xué)生進(jìn)行了問卷調(diào)查,并制作出統(tǒng)計(jì)圖.如圖2和圖3.
經(jīng)結(jié)合圖2和圖3回答下列問題:
(1)參加問卷調(diào)查的學(xué)生人數(shù)為 人,其中選C的人數(shù)占調(diào)查人數(shù)的百分比為 .
(2)在這所學(xué)校中選“比較注意,偶爾水龍頭滴水”的大概有 人.若在該校隨機(jī)抽取一名學(xué)生,這名學(xué)生選B的概率為 .
請(qǐng)結(jié)合圖1解答下列問題:
(3)在“水龍頭滴水情況”圖中,水龍頭滴水量(毫升)與時(shí)間(分)可以用我們學(xué)過的哪種函數(shù)表示?請(qǐng)求出函數(shù)關(guān)系式.
(4)為了維持生命,每人每天需要約2400毫升水,該校選C的學(xué)生因沒有擰緊水龍頭,2小時(shí)浪費(fèi)的水可維持多少人一天的生命需要?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小強(qiáng)每天堅(jiān)持引體向上鍛煉,他記錄了某一周每天做引體向上的個(gè)數(shù),如下表:
其中有三天的個(gè)數(shù)墨汁覆蓋了,但小強(qiáng)己經(jīng)計(jì)算出這組數(shù)據(jù)唯一眾數(shù)是13,平均數(shù)是12,那么這組數(shù)據(jù)的方差是( )
A.B.C.1D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形ABCD中,對(duì)角線BD的長(zhǎng)為1,點(diǎn)P是線段BD上的一點(diǎn),聯(lián)結(jié)CP,將△BCP沿著直線CP翻折,若點(diǎn)B落在邊AD上的點(diǎn)E處,且EP//AB,則AB的長(zhǎng)等于________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,⊙O的直徑AB為10cm,弦BC為5cm,D、E分別是∠ACB的平分線與⊙O,AB的交點(diǎn),P為AB延長(zhǎng)線上一點(diǎn),且PC=PE.
(1)求AC、AD的長(zhǎng);
(2)試判斷直線PC與⊙O的位置關(guān)系,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,等腰三角形ABC的底邊BC為4,面積為24,腰AC的垂直平分線EF分別交邊AC,AB于點(diǎn)E,F,若D為BC邊的中點(diǎn),M為線段EF上一動(dòng)點(diǎn),則△CDM的周長(zhǎng)的最小值為 ( )
A.8B.10C.12D.14
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,菱形的頂點(diǎn)與原點(diǎn)重合,點(diǎn)在軸的
正半軸上,點(diǎn)在反比例函數(shù)的圖象上,點(diǎn)的坐標(biāo)為.
求的值.
若將菱形向右平移,使點(diǎn)落在反比例函數(shù)的圖象上,求菱形平移的距離.
怎樣平移可以使點(diǎn)、同時(shí)落在第一象限的曲線上?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,將一塊含有45°角的直角三角板如圖放置,直角頂點(diǎn)C的坐標(biāo)為(1,0),頂點(diǎn)A的坐標(biāo)為(0,2),頂點(diǎn)B恰好落在第一象限的雙曲線上,現(xiàn)將直角三角板沿x軸正方向平移,當(dāng)頂點(diǎn)A恰好落在該雙曲線上時(shí)停止運(yùn)動(dòng),則此時(shí)點(diǎn)C的對(duì)應(yīng)點(diǎn)C′的坐標(biāo)為 ______________.
[Failed to download image : http://qbm-images.oss-cn-hangzhou.aliyuncs.com/QBM/2018/4/4/1916730188324864/1920418179735552/STEM/955c40623e644964ae11bcb49c75f843.png]
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com