【題目】如圖,網(wǎng)格圖中小方格都是邊長為1個單位長度的小正方形,已知三角形ABC的三個頂點都在網(wǎng)格的格點上,按要求完成下列各小題.

(1)請在圖中畫出將三角形ABC先向上平移1個單位長度,再向右平移3個單位長度后的圖形,即三角形A′B′C′,并指出圖中相等的線段;

(2)在(1)的基礎上,A′B′,B′C′分別與AC交于點E,F(xiàn).若∠A=50°,∠C′=51°,分別求出∠A′EF與∠B′FC的度數(shù).

【答案】(1)見解析;(2) ∠A′EF=130°,∠B′FC=129°.

【解析】

(1)直接利用平移的性質得出對應點位置進而得出答案;(2)利用平移前后的兩個圖形全等解答即可

(1)三角形A′B′C′如圖所示.

相等線段:AB=A′B′,BC=B′C′,AC=A′C′.

(2)因為三角形A′B′C′是由三角形ABC平移得到的,所以∠A′=A=50°,C=

C′=51°,ACA′C′,BCB′C′,所以∠A′EF=180°-A′=130°,

B′FC=180°-C=129°.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖是甲、乙兩車在某時段速度隨時間變化的圖象,下列結論錯誤的是(
A.乙前4秒行駛的路程為48米
B.在0到8秒內甲的速度每秒增加4米/秒
C.兩車到第3秒時行駛的路程相等
D.在4至8秒內甲的速度都大于乙的速度

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校七年級為了開展球類興趣小組,需要購買一批足球和籃球﹒若購買3個足球和5個籃球需580元;若購買4個足球和3個籃球需480元.

1)求出足球和籃球的的單價分別是多少?

2)已知該年級決定用800元購進這兩種球,若兩種球都要有,請問有幾種購買方案,并請加以說明﹒

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知平行四邊形ABCD中,CE平分∠BCD且交AD于點EA FCE,且交BC于點F

(1)求證:ABF≌△CDE

(2)如圖,若∠1=65°,求∠B的大。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在6×6的正方形網(wǎng)格中,每個小正方形的邊長為1,點A、BC、D、E、F、M、NP均為格點(格點是指每個小正方形的頂點).

1)利用圖①中的網(wǎng)格,過P點畫直線MN的平行線和垂線.

2)把圖②網(wǎng)格中的三條線段AB、CD、EF通過平移使之首尾順次相接組成一個三角形(在圖②中畫出三角形).

3)第(2)小題中線段ABCD、EF首尾順次相接組成一個三角形的面積是______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,是由一些大小相同的小正方體組合成的簡單幾何體.根據(jù)要求完成下列題目.

1)正面圖中有______塊小正方體;

2)請在下面方格紙中分別畫出它的左視圖和俯視圖(畫出的圖都用鉛筆涂上陰影)

3)用小正方體搭一個幾何體,使得它的左視圖和俯視圖與你在(2)中所畫的圖一致,則這樣的幾何體最多要______塊小正方體.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,等邊△ABC的邊長是2,D、E分別為AB、AC的中點,延長BC至點F,使CF=BC,連接CDEF

1)求證:DE=CF;

2)求EF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】母親節(jié)即將來臨,花之語鮮花店準備購買A,B兩種鮮花禮盒,A型禮盒每盒成本為40元,售價為65元,B型禮盒每盒成本是60元,售價是100元,

1)該花店原計劃購進兩種禮盒共80盒,若全部銷售,要使總利潤不低于2750元,該花店原計劃最多購進多少盒A型禮盒?

2)為了獲得更多的利潤,花店負責人決定在實際的銷售中將B型禮盒的售價下調,A型禮盒的價格不變,根據(jù)市場情況分析,相應的兩種禮盒的銷售量與(1)中獲得最低利潤的銷售量相比,A型禮盒的銷售量增加了,B型禮盒的銷售量增加了30盒,這樣恰好獲得3300元利潤,求的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,圖中的小方格都是邊長為1的正方形,

直接寫出△ABC的各頂點坐標:

A(____,___),B(_____________),C(______,_______);

畫出△ABC關于y軸的對稱圖形△A1B1C1;

直接寫出△ABC關于x軸對稱的△A2B2C2的頂點A2(_____,____)B2(____,____)(其中A2A對應,B2B對應,不必畫圖.)

查看答案和解析>>

同步練習冊答案