【題目】某校七年級為了開展球類興趣小組,需要購買一批足球和籃球﹒若購買3個足球和5個籃球需580元;若購買4個足球和3個籃球需480元.
(1)求出足球和籃球的的單價分別是多少?
(2)已知該年級決定用800元購進這兩種球,若兩種球都要有,請問有幾種購買方案,并請加以說明﹒
【答案】(1)足球的單價為60元,籃球的單價為80元;(2)有三種購買方案,方案1:購進4個足球,7個籃球;方案2:購進8個足球,4個籃球;方案3:購進12個足球,1個籃球.
【解析】
(1)設足球的單價為元,籃球的單價為元,根據(jù)購買3個足球和5個籃球需580元可以列出,根據(jù)購買4個足球和3個籃球需480元可以列出,由此列出方程組求解即可;
(2)設購買個足球,個籃球,根據(jù)(1)中求出的足球和籃球的單價可以得到購買兩種球的總費用為:,由于和都是正整數(shù),所以求出這個二元一次方程的正整數(shù)解即為所有的購買方案;
(1)設足球的單價為元,籃球的單價為元
依題意,得: ,
解得:
足球的單價為60元,籃球的單價為80元.
(2)設購買個足球,個籃球
依題意,得:,
∴
∵均為正整數(shù),
∴當時,;當時,;當時,,
∴有三種購買方案,方案1:購進4個足球,7個籃球;
方案2:購進8個足球,4個籃球;
方案3:購進12個足球,1個籃球.
科目:初中數(shù)學 來源: 題型:
【題目】問題背景:
小紅同學在學習過程中遇到這樣一道計算題“計算4×3.142﹣4×3.14×3.28+3.282”,他覺得太麻煩,估計應該有可以簡化計算的方法,就去請教崔老師.崔老師說:你完成下面的問題后就可能知道該如何簡化計算啦!
獲取新知:
請你和小紅一起完成崔老師提供的問題:
(1)填寫下表:
x=﹣1,y=1 | x=1,y=0 | x=3,y=2 | x=1,y=1 | x=5,y=3 | |
A=2x﹣y | ﹣3 | 2 | 4 | 1 | 7 |
B=4x2﹣4xy+y2 | 9 | 4 |
|
|
|
(2)觀察表格,你發(fā)現(xiàn)A與B有什么關系?
解決問題:
(3)請結合上述的有關信息,計算4×3.142﹣4×3.14×3.28+3.282.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,四邊形ABCD和CGEF分別是邊長為xcm和ycm的正方形,
(1)用含x和y的代數(shù)式表示圖中陰影部分的面積.
(2)當x=24,y=20時,求此陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一只密封的長方體盒子長、寬、高分別為9 cm,3 cm,5 cm,A′處有食物,甲螞蟻從C處出發(fā)沿長方體表面爬行(不能從下底面爬行),乙螞蟻從B處出發(fā)沿B→A→A′方向爬行,問甲螞蟻是否有先得到食物的可能?并說明理由.(兩螞蟻爬行速度相同)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,小俊在A處利用高為1.5米的測角儀AB測得樓EF頂部E的仰角為30°,然后前進12米到達C處,又測得樓頂E的仰角為60°,求樓EF的高度.( =1.732,結果精確到0.1米)
DEB
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面內有∠AOB=60°,∠AOC=40°,OD是∠AOB的平分線,OE是∠AOC的平分線,求∠DOE的度數(shù).(請作圖解答)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,平行四邊形ABCD中,AB=8cm,AD=12cm,點P在AD 邊上以每秒1cm的速度從點A向點D運動,點Q在BC邊上,以每秒4cm的速度從點C出發(fā),在CB間往返運動,兩個點同時出發(fā),當點P到達點D時停止(同時點Q也停止),在運動以后,以P、D、Q、B四點組成平行四邊形的次數(shù)有( )
A. 4次 B. 3次 C. 2次 D. 1次
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,網格圖中小方格都是邊長為1個單位長度的小正方形,已知三角形ABC的三個頂點都在網格的格點上,按要求完成下列各小題.
(1)請在圖中畫出將三角形ABC先向上平移1個單位長度,再向右平移3個單位長度后的圖形,即三角形A′B′C′,并指出圖中相等的線段;
(2)在(1)的基礎上,A′B′,B′C′分別與AC交于點E,F(xiàn).若∠A=50°,∠C′=51°,分別求出∠A′EF與∠B′FC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)如圖①,已知:在△ABC中,∠BAC=90°,AB=AC,直線m經過點A,BD⊥直線m, CE⊥直線m,垂足分別為點D、E.證明:DE=BD+CE.
(2)如圖②,將(1)中的條件改為:在△ABC中,AB=AC,D、A、E三點都在直線m上,并且有∠BDA=∠AEC=∠BAC=α,其中α為任意鈍角.請問結論DE=BD+CE是否成立?如成立,請你給出證明;若不成立,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com