【題目】如圖,在平面直角坐標(biāo)系中,已知拋物線與直線都經(jīng)過、兩點(diǎn),該拋物線的頂點(diǎn)為C

1)求此拋物線和直線的解析式;

2)設(shè)直線與該拋物線的對(duì)稱軸交于點(diǎn)E,在射線上是否存在一點(diǎn)M,過Mx軸的垂線交拋物線于點(diǎn)N,使點(diǎn)M、N、C、E是平行四邊形的四個(gè)頂點(diǎn)?若存在,求點(diǎn)M的坐標(biāo);若不存在,請說明理由;

3)設(shè)點(diǎn)P是直線下方拋物線上的一動(dòng)點(diǎn),當(dāng)面積最大時(shí),求點(diǎn)P的坐標(biāo),并求面積的最大值.

【答案】(1)拋物線的解析式為,直線的解析式為,(2.(3)當(dāng)時(shí),面積的最大值是,此時(shí)P點(diǎn)坐標(biāo)為

【解析】

1)將兩點(diǎn)坐標(biāo)分別代入二次函數(shù)的解析式和一次函數(shù)解析式即可求解;

2)先求出C點(diǎn)坐標(biāo)和E點(diǎn)坐標(biāo),則,分兩種情況討論:①若點(diǎn)Mx軸下方,四邊形為平行四邊形,則,②若點(diǎn)Mx軸上方,四邊形為平行四邊形,則,設(shè),則,可分別得到方程求出點(diǎn)M的坐標(biāo);

3)如圖,作軸交直線于點(diǎn)G,設(shè),則,可由,得到m的表達(dá)式,利用二次函數(shù)求最值問題配方即可.

解:(1)∵拋物線經(jīng)過、兩點(diǎn),

,

,

∴拋物線的解析式為

∵直線經(jīng)過、兩點(diǎn),

,解得:,

∴直線的解析式為,

2)∵,

∴拋物線的頂點(diǎn)C的坐標(biāo)為

軸,

,

①如圖,若點(diǎn)Mx軸下方,四邊形為平行四邊形,則,

設(shè),則,

,

,

解得:,(舍去),

,

②如圖,若點(diǎn)Mx軸上方,四邊形為平行四邊形,則,

設(shè),則,

,

解得:(舍去),

綜合可得M點(diǎn)的坐標(biāo)為

3)如圖,作軸交直線于點(diǎn)G,

設(shè),則,

,

∴當(dāng)時(shí),面積的最大值是,此時(shí)P點(diǎn)坐標(biāo)為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀對(duì)學(xué)生的成長有著深遠(yuǎn)的影響.某中學(xué)為了解學(xué)生每周課余閱讀的時(shí)間,在本校隨機(jī)抽取若干名學(xué)生進(jìn)行調(diào)查,并依據(jù)調(diào)查結(jié)果經(jīng)制了以下不完整的統(tǒng)計(jì)圖表.

組別

時(shí)間(小時(shí))

頻數(shù)(人數(shù))

頻率

A

6

B

C

10

D

8

E

4

合計(jì)

1

請根據(jù)圖表中的信息,解答下列問題:

1)表中的 , ,將頻數(shù)分布直方圖補(bǔ)全;

2)估計(jì)該校2000名學(xué)生中,每周課余閱讀時(shí)間不足1小時(shí)的學(xué)生大約有多少名?

3組的4人中,有1名男生和3名女生,該校計(jì)劃在組學(xué)生中隨機(jī)選出兩人向全校同學(xué)作讀書心得報(bào)告,求抽取的兩名學(xué)生剛好是1名男生和1名女生的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知⊙O的半徑是2,點(diǎn)A,B在⊙O上,且∠AOB90°,動(dòng)點(diǎn)C在⊙O上運(yùn)動(dòng)(不與A,B重合),點(diǎn)D為線段BC的中點(diǎn),連接AD,則線段AD的長度最大值是_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△OAB中,∠AOB90°,AO2,BO4.將△OAB繞頂點(diǎn)O按順時(shí)針方向旋轉(zhuǎn)到△OA1B1處,此時(shí)線段OB1AB的交點(diǎn)D恰好為線段AB的中點(diǎn),線段A1B1OA交于點(diǎn)E,則圖中陰影部分的面積__

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,拋物線y=x2+bx+c經(jīng)過A、B兩點(diǎn),A、B兩點(diǎn)的坐標(biāo)分別為(﹣1,0)、(0,﹣3).

(1)求拋物線的函數(shù)解析式;

(2)點(diǎn)E為拋物線的頂點(diǎn),點(diǎn)C為拋物線與x軸的另一交點(diǎn),點(diǎn)D為y軸上一點(diǎn),且DC=DE,求出點(diǎn)D的坐標(biāo);

(3)在第二問的條件下,在直線DE上存在點(diǎn)P,使得以C、D、P為頂點(diǎn)的三角形與△DOC相似,請你直接寫出所有滿足條件的點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線過點(diǎn)A(m-2,n), Bm+4n),Cm,).

1b=__________(用含m的代數(shù)式表示);

2)求△ABC的面積;

3)當(dāng)時(shí),均有,求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)的圖像與軸交于點(diǎn),左側(cè)),與軸正半軸交于點(diǎn),點(diǎn)在拋物線上,軸,且

1)求點(diǎn),的坐標(biāo)及的值;

2)點(diǎn)軸右側(cè)拋物線上一點(diǎn).

如圖,若平分,于點(diǎn),求點(diǎn)的坐標(biāo);

如圖,拋物線上一點(diǎn)的橫坐標(biāo)為2,直線軸于點(diǎn),過點(diǎn)作直線的垂線,垂足為,若,求點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知二次函數(shù)的圖象與軸交于點(diǎn)、,與軸交于點(diǎn)

1)求二次函數(shù)的解析式;

2)若點(diǎn)為拋物線上的一點(diǎn),點(diǎn)為對(duì)稱軸上的一點(diǎn),且以點(diǎn)、、、為頂點(diǎn)的四邊形為平行四邊形,求點(diǎn)的坐標(biāo);

3)點(diǎn)是二次函數(shù)第四象限圖象上一點(diǎn),過點(diǎn)軸的垂線,交直線于點(diǎn),求四邊形面積的最大值及此時(shí)點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】近幾年,中學(xué)生過生日互送禮物甚至有部分家長為慶賀孩子生日大擺宴席攀比之風(fēng)已成為社會(huì)關(guān)注熱點(diǎn).為此某媒體記者就中學(xué)生攀比心理的成因?qū)δ呈谐菂^(qū)若干名市民進(jìn)行了調(diào)查,調(diào)查結(jié)果分為四組:社會(huì)環(huán)境的影響;學(xué)校正確引導(dǎo)的缺失;家長榜樣示范的不足;其他.并將調(diào)查結(jié)果繪制成如下條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖均不完整

請根據(jù)圖中提供的信息,解答下列問題:

扇形統(tǒng)計(jì)圖中,B組所在扇形的圓心角度數(shù)是______

將條形統(tǒng)計(jì)圖補(bǔ)充完整;

根據(jù)抽樣調(diào)查結(jié)果,請你估計(jì)該市城區(qū)120000名市民中有多少名市民持C組觀點(diǎn);

針對(duì)現(xiàn)在部分同學(xué)因舉行生日宴會(huì)而造成極大浪費(fèi)的現(xiàn)象,請你簡單說說中學(xué)生大操大辦慶祝生日的危害性,并提出合理化的建議.

查看答案和解析>>

同步練習(xí)冊答案