【題目】如圖1,已知拋物線(xiàn)y=ax2+bxa≠0)經(jīng)過(guò)A(6,0)、B(8,8)兩點(diǎn).

(1)求拋物線(xiàn)的解析式;

(2)將直線(xiàn)OB向下平移m個(gè)單位長(zhǎng)度后,得到的直線(xiàn)與拋物線(xiàn)只有一個(gè)公共點(diǎn)D,求m的值及點(diǎn)D的坐標(biāo);

(3)如圖2,若點(diǎn)N在拋物線(xiàn)上,且∠NBO=∠ABO,則在(2)的條件下,在坐標(biāo)平面內(nèi)有點(diǎn)P,求出所有滿(mǎn)足△POD∽△NOB的點(diǎn)P坐標(biāo)(點(diǎn)P、O、D分別與點(diǎn)NO、B對(duì)應(yīng)).

【答案】(1)拋物線(xiàn)的解析式是y=x2﹣3x;(2)D點(diǎn)的坐標(biāo)為(4,﹣4);(3)點(diǎn)P的坐標(biāo)是()或().

【解析】試題分析:(1)利用待定系數(shù)法求二次函數(shù)解析式進(jìn)而得出答案即可;
(2)首先求出直線(xiàn)OB的解析式為y=x,進(jìn)而將二次函數(shù)以一次函數(shù)聯(lián)立求出交點(diǎn)即可;
(3)首先求出直線(xiàn)A′B的解析式,進(jìn)而由P1OD∽△NOB,得出P1OD∽△N1OB1,進(jìn)而求出點(diǎn)P1的坐標(biāo),再利用翻折變換的性質(zhì)得出另一點(diǎn)的坐標(biāo).

試題解析:

(1)∵拋物線(xiàn)y=ax2+bxa≠0)經(jīng)過(guò)A(6,0)、B(8,8)

∴將AB兩點(diǎn)坐標(biāo)代入得:,解得:,

∴拋物線(xiàn)的解析式是y=x2﹣3x

(2)設(shè)直線(xiàn)OB的解析式為y=k1x,由點(diǎn)B(8,8),

得:8=8k1,解得:k1=1

∴直線(xiàn)OB的解析式為y=x,

∴直線(xiàn)OB向下平移m個(gè)單位長(zhǎng)度后的解析式為:y=xm

xm=x2﹣3x,

∵拋物線(xiàn)與直線(xiàn)只有一個(gè)公共點(diǎn),

∴△=16﹣2m=0,

解得:m=8,

此時(shí)x1=x2=4,y=x2﹣3x=﹣4,

D點(diǎn)的坐標(biāo)為(4,﹣4)

(3)∵直線(xiàn)OB的解析式為y=x,且A(6,0),

∴點(diǎn)A關(guān)于直線(xiàn)OB的對(duì)稱(chēng)點(diǎn)A的坐標(biāo)是(0,6),

根據(jù)軸對(duì)稱(chēng)性質(zhì)和三線(xiàn)合一性質(zhì)得出∠ABO=ABO,

設(shè)直線(xiàn)AB的解析式為y=k2x+6,過(guò)點(diǎn)(8,8),

8k2+6=8,解得:k2= ,

∴直線(xiàn)AB的解析式是y=,

∵∠NBO=ABO,ABO=ABO,

BABN重合,即點(diǎn)N在直線(xiàn)AB上,

∴設(shè)點(diǎn)Nn,),又點(diǎn)N在拋物線(xiàn)y=x2﹣3x上,

=n2﹣3n, 解得:n1=﹣,n2=8(不合題意,舍去)

N點(diǎn)的坐標(biāo)為(﹣,).

如圖1,將NOB沿x軸翻折,得到N1OB1

N1(﹣,-),B1(8,﹣8),

O、D、B1都在直線(xiàn)y=﹣x上.

∵△P1OD∽△NOB,NOB≌△N1OB1,

∴△P1OD∽△N1OB1,

,

∴點(diǎn)P1的坐標(biāo)為().

OP1D沿直線(xiàn)y=﹣x翻折,可得另一個(gè)滿(mǎn)足條件的點(diǎn)P2),

綜上所述,點(diǎn)P的坐標(biāo)是()或().

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在數(shù)軸上AB兩點(diǎn)對(duì)應(yīng)的數(shù)分別是6,-6 CO重合,D點(diǎn)在數(shù)軸的正半軸上

1如圖1CF 平分,_________

2如圖2,沿?cái)?shù)軸的正半軸向右平移t0t3個(gè)單位后再繞點(diǎn)頂點(diǎn)逆時(shí)針旋轉(zhuǎn)30t,平分,此時(shí)記.

當(dāng)t=1時(shí), _______

猜想的數(shù)量關(guān)系,并證明;

3如圖3開(kāi)始重合,沿?cái)?shù)軸的正半軸向右平移t0t3個(gè)單位再繞點(diǎn)頂點(diǎn)逆時(shí)針旋轉(zhuǎn)30t,平分,此時(shí)記,與此同時(shí),沿?cái)?shù)軸的負(fù)半軸向左平移t0t3個(gè)單位再繞點(diǎn)頂點(diǎn)順時(shí)針旋轉(zhuǎn)30t,平分,,滿(mǎn)足,請(qǐng)直接寫(xiě)出t的值為_________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,OAOBABx軸于點(diǎn)C,點(diǎn)A1)在反比例函數(shù)的圖象上.

1)求反比例函數(shù)的表達(dá)式;

2)在x軸的負(fù)半軸上存在一點(diǎn)P,使得SAOP=SAOB,求點(diǎn)P的坐標(biāo);

3)若將△BOA繞點(diǎn)B按逆時(shí)針?lè)较蛐D(zhuǎn)60°得到△BDE.直接寫(xiě)出點(diǎn)E的坐標(biāo),并判斷點(diǎn)E是否在該反比例函數(shù)的圖象上,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】電子跳蚤游戲盤(pán)是如圖所示的△ABC,AB=AC=BC=5.如果跳蚤開(kāi)始時(shí)在BC邊的P0處,BP0=2.跳蚤第一步從P0跳到AC邊的P1(第1次落點(diǎn))處,且CP1= CP0;第二步從P1跳到AB邊的P2(第2次落點(diǎn))處,且AP2= AP1;第三步從P2跳到BC邊的P3(第3次落點(diǎn))處,且BP3= BP2;…;跳蚤按照上述規(guī)則一直跳下去,第n次落點(diǎn)為Pnn為正整數(shù)),則點(diǎn)P2016與點(diǎn)P2017之間的距離為_________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,ABDE,ACDFAC=DF下列條件中不能判斷ABC≌△DEF的是( 。

A. AB=DE B. B=∠E C. EF=BC D. EFBC

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在直角坐標(biāo)系中點(diǎn)的坐標(biāo)為(1,0),過(guò)點(diǎn)作x軸的垂線(xiàn)交直線(xiàn)y=2x于,過(guò)點(diǎn)作直線(xiàn)y=2x的垂線(xiàn)交x軸于,過(guò)點(diǎn)作x軸的垂線(xiàn)交直線(xiàn)y=2x于…,依此規(guī)律,則的坐標(biāo)為___________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,長(zhǎng)方形紙片ABCD中,AB6 cmBC8 cm,點(diǎn)EBC邊上一點(diǎn),連接AE,并將AEB沿AE折疊,得到AEB′,以C,E,B′為頂點(diǎn)的三角形是直角三角形時(shí),BE的長(zhǎng)為____cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一次函數(shù)y=-2x+2的圖象與軸、軸分別交于點(diǎn)、,以線(xiàn)段為直角邊在第一象限內(nèi)作等腰直角三角形ABC,且,則點(diǎn)C坐標(biāo)為_____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知點(diǎn)A、BC是直線(xiàn)l上的三個(gè)點(diǎn),線(xiàn)段AB8厘米.

1)若AB2BC,求線(xiàn)段AC的長(zhǎng)度;

2)若點(diǎn)C是線(xiàn)段AB的中點(diǎn),點(diǎn)P、Q是直線(xiàn)l上的兩個(gè)動(dòng)點(diǎn),點(diǎn)P的速度為1厘米/秒,點(diǎn)Q的速度為2厘米/秒.點(diǎn)P、Q分別從點(diǎn)C、B同時(shí)出發(fā)在直線(xiàn)上運(yùn)動(dòng),則經(jīng)過(guò)多少秒時(shí)線(xiàn)段PQ的長(zhǎng)為5厘來(lái)?

查看答案和解析>>

同步練習(xí)冊(cè)答案