【題目】某校組織了以美好家園,你我共建;節(jié)能減排,人人有責為主題的電子小報制作比賽,評分結(jié)果有60.70.80.90.100五種,F(xiàn)從中隨機抽取部分作品,對其份數(shù)及成績進行整理,制作如下兩幅不完整的統(tǒng)計圖。根據(jù)圖中提供的信息,解答下列問題:

(1)本次抽取了多少份作品

(2)補全兩幅統(tǒng)計圖

(3)已知該校收取參賽作品共600份,請估計該校比賽成績達到90分以上(含90分)的作品有多少份?

【答案】(1)120份(2)見解析(3)240份

【解析】分析:(1)結(jié)合條形統(tǒng)計圖和扇形統(tǒng)計圖,用100分的份數(shù)除以它所占的百分比可得本次抽取的作品總份數(shù).

分別求出80分的份數(shù)及所占的百分比和60分所占的百分比,補全兩幅統(tǒng)計圖.

運用樣本估計總體的方法可知,600份作品成績達到90分以上(含90分)的作品=600×(30%+10%).

詳解:(1)12÷10%=120(),即本次抽取了120份作品.

80分的份數(shù)=1206243612=42(),

它所占的百分比=42÷120=35%.

60分的作品所占的百分比=6÷120=5%;

600×(30%+10%)=240(份).

答:該校比賽成績達到90分以上的作品有240.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】某校隨機抽取部分學生,就學習習慣進行調(diào)查,將對自己做錯的題目進行整理、分析、改正(選項為:很少、有時、常常、總是)的調(diào)查數(shù)據(jù)進行了整理,繪制成部分統(tǒng)計圖如圖.

請根據(jù)圖中信息,解答下列問題

1)該調(diào)查抽取的學生數(shù)量為_________________,常常對應(yīng)扇形的圓心角為_______;

2)請你補全條形統(tǒng)計圖;

3)若該校共有3200名學生,請你估計其中總是對錯題進行整理、分析、改正的學生有多少名?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,長方形中,點軸上,點軸上,點的坐標是,長方形沿直線折疊,使得點落在對角線上的點處,折痕與軸分別交于點、

1)求線段的長;

2)求點的坐標;

3)若點在直線上,在軸上是否存在點,使以、、為頂點的四邊形是平行四邊形?若存在,請求出滿足條件的點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】化簡

1mn4mn;

23a22aa246a+9;

34x25x)﹣52x2+3x);

43x2[7x﹣(4x3)﹣2x2]

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,方格紙中的每個小方格都是邊長為1個單位的正方形,在建立平面直角坐標系后,的頂點均在格點上,點的坐標為

向上平移5個單位后得到對應(yīng)的,畫出,并寫出的坐標;

以原點為對稱中心,畫出與關(guān)于原點對稱的,并寫出點的坐標.

以原點O為旋轉(zhuǎn)中心,畫出把順時針旋轉(zhuǎn)90°的圖形A3B3C3,并寫出C3的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了迎接“五·一”小長假的購物高峰,某運動品牌服裝專賣店準備購進甲、乙兩種服裝,甲種服裝每件進價l80元,售價320元;乙種服裝每件進價l50元,售價280元.

(1)若該專賣店同時購進甲、乙兩種服裝共200件,恰好用去32400元,求購進甲、乙兩種服裝各多少件?

(2)該專賣店為使甲、乙兩種服裝共200件的總利潤(利潤=售價一進價)不少于26700元, 且不超過26800元,則該專賣店有幾種進貨方案?

(3)在(2)的條件下,專賣店準備在5月1日當天對甲種服裝進行優(yōu)惠促銷活動,決定對甲種服裝每件優(yōu)惠a(0<a<20)元出售,乙種服裝價格不變.那么該專賣店要獲得最大利潤應(yīng)如何進貨?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知代數(shù)式Ax2+3xy+x12B2x2xy+4y1

1)當xy=﹣2時,求2AB的值;

2)若2AB的值與y的取值無關(guān),求x的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知命題 ab,則 a2b2

1)此命題是真命題還是假命題?若是真命題,請給予證明;若是假命題,請舉出一個 反例.

2)寫出此命題的逆命題,并判斷此逆命題的真假;若是真命題,請給予證明;若是假 命題,請舉出一個反例.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知點A、B、C在同一直線上,M、N分別是AB,BC的中點.

(1)AB=20,BC =8,求MN的長;

(2)AB =a,BC =8,求MN的長;

(3)AB =a,BC =b,求MN的長;

(4)(1)(2)(3)的結(jié)果中能得到什么結(jié)論?

查看答案和解析>>

同步練習冊答案