【題目】利用勾股定理可以在數(shù)軸上畫出表示的點,請依據(jù)以下思路完成畫圖,并保留畫圖痕跡:
第一步:(計算)嘗試滿足,使其中a,b都為正整數(shù).你取的正整數(shù)a=____,b=________;
第二步:(畫長為的線段)以第一步中你所取的正整數(shù)a,b為兩條直角邊長畫Rt△OEF,使O為原點,點E落在數(shù)軸的正半軸上, ,則斜邊OF的長即為.
請在下面的數(shù)軸上畫圖:(第二步不要求尺規(guī)作圖,不要求寫畫法)
第三步:(畫表示的點)在下面的數(shù)軸上畫出表示的點M,并描述第三步的畫圖步驟:_______________________________________________________________.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標系中,矩形的頂點在軸的正半軸上,頂點在軸的正半軸上,是邊上的一點,,.反比例函數(shù)在第一象限內(nèi)的圖像經(jīng)過點,交于點,.
(1)求這個反比例函數(shù)的表達式,
(2)動點在矩形內(nèi),且滿足.
①若點在這個反比例函數(shù)的圖像上,求點的坐標,
②若點是平面內(nèi)一點,使得以、、、為頂點的四邊形是菱形,求點的坐標.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠ABC=∠ACB,AD、BD、CD分別平分△ABC的外角∠EAC、內(nèi)角∠ABC、外角∠AFC,以下結(jié)論:①AD∥BC;②∠ACB=2∠ADB;③∠ADC=90°—∠ABD;④∠BDC=∠BAC,其中正確的結(jié)論有_____________。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點在線段上,是線段的中點.
(1)在線段上,求作點,使.
(要求:尺規(guī)作圖,不寫作法保留作圖痕跡)
(2)在(1)的條件下,,
①若,求的長;
②若點在線段上,且,請你判斷點是哪條線段的中點,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,△OA1B1繞點O逆時針旋轉(zhuǎn)90°,得△OA2B2;△OA2B2繞點O逆時針旋轉(zhuǎn)90°,得△OA3B3;△OA3B3繞點O逆時針旋轉(zhuǎn)90°,得△OA4B4;…;若點A1(1,0),B1(1,1),則點B4的坐標是________,點B 2018的坐標是________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系xOy中,點M的坐標為(x1,y1),點N的坐標為(x2,y2),且x1≠x2,y1≠y2,以MN為邊構(gòu)造菱形,若該菱形的兩條對角線分別平行于x軸,y軸,則稱該菱形為邊的“坐標菱形”,
(1)已知點A(2,0),B(0,2),則以AB為邊的“坐標菱形”的面積為 ;
(2)若點C(1,2),點D在直線y=5上,以CD為邊的“坐標菱形”為正方形,求直線CD解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在正方形中,連接,為射線上的一個動點(與點不重合),連接,的垂直平分線交線段于點,連接,.
提出問題:當(dāng)點運動時,的度數(shù)是否發(fā)生改變?
探究問題:
(1)首先考察點的兩個特殊位置:
①當(dāng)點與點重合時,如圖1所示,____________
②當(dāng)時,如圖2所示,①中的結(jié)論是否發(fā)生變化?直接寫出你的結(jié)論:__________;(填“變化”或“不變化”)
(2)然后考察點的一般位置:依題意補全圖3,圖4,通過觀察、測量,發(fā)現(xiàn):(1)中①的結(jié)論在一般情況下_________;(填“成立”或“不成立”)
(3)證明猜想:若(1)中①的結(jié)論在一般情況下成立,請從圖3和圖4中任選一個進行證明;若不成立,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com