【題目】如圖,已知的外角的平分線交邊的垂直平分線于點.于點,于點.
(1)求證:
(2)若,,求的長
【答案】(1)見解析;(2)3.
【解析】
(1)連接PB、PC,根據(jù)線段垂直平分線的性質(zhì)得到PB=PC,根據(jù)角平分線的性質(zhì)得到PD=PE,證明Rt△BPD≌Rt△CPE,根據(jù)全等三角形的性質(zhì)可得;
(2)證明Rt△ADP≌Rt△AEP,得到AD=AE,根據(jù)題意列出方程,解方程即可.
(1)證明:連接PB、PC,
∵PQ是BC邊的垂直平分線,
∴PB=PC,
∵AP平分∠DAC,PD⊥AB,PE⊥AC,
∴PD=PE,
在Rt△BPD和Rt△CPE中,
,
∴Rt△BPD≌Rt△CPE,
∴BD=CE;
(2)解:在Rt△ADP和Rt△AEP中,
,
∴Rt△ADP≌Rt△AEP,
∴AD=AE,
∵BD=CE,,,
∴AD+6=12-AD,
解得,AD=3.
科目:初中數(shù)學 來源: 題型:
【題目】在△ABC中,點P是平面內(nèi)任意一點(不同于A、B、C),若點P與A、B、C中的某兩點的連線的夾角為直角時,則稱點P為△ABC的一個勾股點.
(1)如圖1,若點P是△ABC內(nèi)一點,∠A=55°,∠ABP=10°,∠ACP=25°,試說明點P是△ABC的一個勾股點;
(2)如圖2,等腰△ABC的頂點都在格點上,點D是BC的中點,點P在直線AD上,請在圖中標出使得點P是△ABC的勾股點時,點P的位置;
(3)在Rt△ABC中,∠ACB=90°,AC=12,BC=16,點D是AB的中點,點P在射線CD上.若點P是△ABC的勾股點,請求出CP的長;
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在中,,,,點從點出發(fā),以每秒個單位長度的速度沿線段運動,到點停止.當點不與的頂點重合時,過點作其所在直角邊的垂線交于點,再以為斜邊作等腰直角三角形,且點與的另一條直角邊始終在同側(cè),設與重疊部分圖形的面積為(平方單位),點的運動時間為(秒).
求的長(用含的代數(shù)式表示);
當為何值時點恰好落在上?
當點在邊上運動時,求與之間的函數(shù)關系式;
如圖,當為何值時,點恰好落在邊上的高上?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在中,,,點P從點B出發(fā),以速度沿向點C運動,設點P的運動時間為t秒.
(1)_______.(用含t的代數(shù)式表示)
(2)當點P從點B開始運動,同時,點Q從點C出發(fā),以的速度沿向點A運動,當≌時,求v的值.
(3)在(2)的條件下,求≌時v的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)如圖1,圖2,圖3,在中,分別以,為邊,向外作正三角形,正四邊形,正五邊形,,相交于點O.
①如圖1,求證:≌;
②探究:如圖1,________;如圖2,_______;如圖3,_______;
(2)如圖4,已知:,是以為邊向外所作正n邊形的一組鄰邊:,是以為邊向外所作正n邊形的一組鄰邊,,的延長相交于點O.
①猜想:如圖4, (用含n的式子表示);
②根據(jù)圖4證明你的猜想.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在長方形ACDF中,AC=DF,點B在CD上,點E在DF上,BC=DE=a,AC=BD=b,AB=BE=c,且AB⊥BE.
(1)用兩種不同的方法表示出長方形ACDF的面積S,并探求a,b,c之間的等量關系(需要化簡)
(2)請運用(1)中得到的結(jié)論,解決下列問題:
①求當c=10,a=6時,求S的值;
②當c﹣b=1,a=5時,求S的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知為直徑,是直徑上一動點(不與點,,重合),過點作直線交于,兩點,是上一點(不與點,重合),且,直線交直線于點.
如圖,當點在線段上時,試判斷與的大小關系,并證明你的結(jié)論;
當點在線段上,且時,其它條件不變.
①請你在圖中畫出符合要求的圖形,并參照圖標記字母;
②判斷中的結(jié)論是否還成立,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形的邊長為,,是對角線.將繞著點順時針旋轉(zhuǎn)得到,交于點,連接交于點,連接.則下列結(jié)論:
①四邊形是菱形②③
④,其中正確的結(jié)論是( )
A. ①②③④ B. ①②③ C. ①② D. ②
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com