【題目】(1)探究發(fā)現(xiàn)
數(shù)學(xué)活動課上,小明說“若直線向左平移3個(gè)單位,你能求平移后所得直線所對應(yīng)函數(shù)表達(dá)式嗎?”
經(jīng)過一番討論,小組成員展示了他們的解答過程:
在直線上任取點(diǎn),
向左平移3個(gè)單位得到點(diǎn)
設(shè)向左平移3個(gè)單位后所得直線所對應(yīng)的函數(shù)表達(dá)式為.
因?yàn)?/span>過點(diǎn),
所以,
所以,
填空:所以平移后所得直線所對應(yīng)函數(shù)表達(dá)式為
(2)類比運(yùn)用
已知直線,求它關(guān)于軸對稱的直線所對應(yīng)的函數(shù)表達(dá)式;
(3)拓展運(yùn)用
將直線繞原點(diǎn)順時(shí)針旋轉(zhuǎn)90°,請直接寫出:旋轉(zhuǎn)后所得直線所對應(yīng)的函數(shù)表達(dá)式 .
【答案】(1);(2);(3)
【解析】
(1)將直接代入即可得出平移后所得直線所對應(yīng)函數(shù)表達(dá)式;
(2)在直線上取兩點(diǎn),可得出兩點(diǎn)關(guān)于軸對稱的點(diǎn)的坐標(biāo)為,利用待定系數(shù)法求直線解析式即可;
(3)在直線上取兩點(diǎn),可得出兩點(diǎn)關(guān)于軸對稱的點(diǎn)的坐標(biāo)為,利用待定系數(shù)法求直線解析式即可.
解:(1)∵
∴平移后所得直線所對應(yīng)函數(shù)表達(dá)式為:
故答案為:;
(2)在直線上取兩點(diǎn),可得出兩點(diǎn)關(guān)于軸對稱的點(diǎn)的坐標(biāo)為,
設(shè)直線的解析式為,則有:
解得:
∴直線所對應(yīng)的函數(shù)表達(dá)式為:;
(3)在直線上取兩點(diǎn),可得出兩點(diǎn)關(guān)于軸對稱的點(diǎn)的坐標(biāo)為,
設(shè)設(shè)直線的解析式為,則有:
解得:
∴直線的解析式為:.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,河的兩岸l1與l2相互平行,A、B是l1上的兩點(diǎn),C、D是l2上的兩點(diǎn),某人在點(diǎn)A處測得∠CAB=90°,∠DAB=30°,再沿AB方向前進(jìn)20米到達(dá)點(diǎn)E(點(diǎn)E在線段AB上),測得∠DEB=60°,求C、D兩點(diǎn)間的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知兩地相距,甲、乙兩人沿同一公路從 地出發(fā)到地,甲騎摩托車,乙騎自行車,如圖中分別表示甲、乙離開地的距離 與時(shí)間 的函數(shù)關(guān)系的圖象,結(jié)合圖象解答下列問題.
(1)甲比乙晚出發(fā)___小時(shí),乙的速度是___ ;甲的速度是___.
(2)若甲到達(dá)地后,原地休息0.5小時(shí),從地以原來的速度和路線返回地,求甲、乙兩人第二次相遇時(shí)距離地多少千米?并畫出函數(shù)關(guān)系的圖象.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,為坐標(biāo)原點(diǎn),矩形的頂點(diǎn)、,將矩形的一個(gè)角沿直線折疊,使得點(diǎn)落在對角線上的點(diǎn)處,折痕與軸交于點(diǎn).
(1)求線段的長度;
(2)求直線所對應(yīng)的函數(shù)表達(dá)式;
(3)若點(diǎn)在線段上,在線段上是否存在點(diǎn),使以為頂點(diǎn)的四邊形是平行四邊形?若存在,請求出點(diǎn)的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】國家規(guī)定,中小學(xué)生每天在校體育活動時(shí)間不低于.為此,某縣就“你每天在校體育活動時(shí)間是多少”的問題,隨機(jī)調(diào)查了轄區(qū)內(nèi)300名初中學(xué)生.根據(jù)調(diào)查結(jié)果繪制成統(tǒng)計(jì)圖如圖所示,其中組為,組為,組為,組為.
請根據(jù)上述信息解答下列問題:
(1)本次調(diào)查數(shù)據(jù)的中位數(shù)落在______組內(nèi),眾數(shù)落在______組內(nèi);
(2)若該轄區(qū)約4000名初中生,請你估計(jì)其中達(dá)到國家規(guī)定體育活動時(shí)間的人數(shù);
(3)若組取,組取,組取,組取,試計(jì)算這300名學(xué)生平均每天在校體育活動的時(shí)間.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)P是∠AOB內(nèi)任意一點(diǎn),且∠AOB=40°,點(diǎn)M和點(diǎn)N分別是射線OA和射線OB上的動點(diǎn),當(dāng)△PMN周長取最小值時(shí),則∠MPN的度數(shù)為( )
A. 140° B. 100° C. 50° D. 40°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點(diǎn)A的坐標(biāo)為(m,0),點(diǎn)B的坐標(biāo)為(m﹣2,0),在x軸上方取點(diǎn)C,使CB⊥x軸,且CB=2AO,點(diǎn)C,C′關(guān)于直線x=m對稱,BC′交直線x=m于點(diǎn)E,若△BOE的面積為4,則點(diǎn)E的坐標(biāo)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1.直線AD∥EF,點(diǎn)B,C分別在EF和AD上,∠A=∠ABC,BD平分∠CBF.
(1)求證:AB⊥BD;
(2)如圖2,BG⊥AD于點(diǎn)G,求證:∠ACB=2∠ABG;
(3)在(2)的條件下,如圖3,CH平分∠ACB交BG于點(diǎn)H,設(shè)∠ABG=α,請直接寫出∠BHC的度數(shù).(用含α的式子表示)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com