【題目】計算:(1) (2)
(3) (4)(3x+y)(-y+3x)
(5)2a(a-2a3)-(-3a2)2; (6)(x-3)(x+2)-(x+1)2
【答案】(1);(2);(3);(4);(5);(6).
【解析】
(1)先進行乘方運算,然后再利用單項式的乘除法法則按順序進行計算即可;
(2)先利用完全平方公式進行展開,然后再合并同類項即可;
(3)利用單項式乘多項式的法則進行計算即可;
(4)利用平方差公式進行計算即可;
(5)先進行單項式乘多項式運算、積的乘方運算,然后再合并同類項即可;
(6)利用多項式乘多項式法則以及完全平方公式進行展開,然后再合并同類項即可.
(1)原式= =-18××6xy5z3=;
(2)原式==;
(3)原式=;
(4)(3x+y)(-y+3x)=(3x)2-y2=9x2-y2;
(5)原式=2a2-4a4-9a4=2a2-13a4;
(6)原式=x2-x-6-(x2+2x+1)=-3x-7.
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,給出以下結(jié)論: ①b2>4ac;
②abc>0;
③2a﹣b=0;
④8a+c<0;
⑤9a+3b+c<0.
其中結(jié)論正確的是 . (填正確結(jié)論的序號)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCD中,E為CD上一點,F(xiàn)為BC延長線上一點,CE=CF.
(1)△DCF可以看做是△BCE繞點C旋轉(zhuǎn)某個角度得到的嗎?說明理由.
(2)若∠CEB=60°,求∠EFD的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】AB是⊙O的直徑,∠DAB=22.5°,延長AB到點C,使得∠ACD=45°.
(1)求證:CD是⊙O的切線;
(2)若AB=2 ,求BC的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在邊長為a的正方形中挖掉一個邊長為b的小正方形(a>b).把余下的部分剪拼成一個矩形(如圖).通過計算圖形(陰影部分)的面積,驗證了一個等式,則這個等式是( )
A. a2﹣b2=(a+b)(a﹣b) B. (a+b)2=a2+2ab+b2
C. (a﹣b)2=a2﹣2ab+b2 D. a2﹣ab=a(a﹣b)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】定義函數(shù)f(x),當x≤3時,f(x)=x2﹣2x,當x>3時,f(x)=x2﹣10x+24,若方程f(x)=2x+m有且只有兩個實數(shù)解,則m的取值范圍為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y= x2+ x﹣ (k>0)與x軸交于點A、B,點A在點B的右邊,與y軸交于點C
(1)如圖1,若∠ACB=90°
①求k的值;
②點P為x軸上方拋物線上一點,且點P到直線BC的距離為 ,則點P的坐標為(請直接寫出結(jié)果)
(2)如圖2,當k=2時,過原點O的任一直線y=mx(m≠0)交拋物線于點E、F(點E在點F的左邊)
①若OF=2OE,求直線y=mx的解析式;
②求 + 的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】將半徑為3cm的圓形紙片沿AB折疊后,圓弧恰好能經(jīng)過圓心O,用圖中陰影部分的扇形圍成一個圓錐的側(cè)面,則這個圓錐的高為( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了提高身體素質(zhì),有些人選擇到專業(yè)的健身中心鍛煉身體,某健身中心的消費方式如下:
普通消費:35元/次;
白金卡消費:購卡280元/張,憑卡免費消費10次再送2次;
鉆石卡消費:購卡560元/張,憑卡每次消費不再收費.
以上消費卡使用年限均為一年,每位顧客只能購買一張卡,且只限本人使用.
(1)李叔叔每年去該健身中心健身6次,他應選擇哪種消費方式更合算?
(2)設一年內(nèi)去該健身中心健身x次(x為正整數(shù)),所需總費用為y元,請分別寫出選擇普通消費和白金卡消費的y與x的函數(shù)關系式;
(3)王阿姨每年去該健身中心健身至少18次,請通過計算幫助王阿姨選擇最合算的消費方式.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com