【題目】如圖,△ABC中,AB=AC,小聰同學(xué)利用直尺和圓規(guī)完成了如下操作:
①作∠BAC的平分線AM交BC于點(diǎn)D;
②作邊AB的垂直平分線EF,EF與AM相交于點(diǎn)P;
③連接PB,PC.
請(qǐng)你觀察圖形解答下列問題:
(1)線段PA,PB,PC之間的數(shù)量關(guān)系是 ;
(2)若∠ABC=70°,求∠BPC的度數(shù).
【答案】(1)PA=PB=PC;(2)80°.
【解析】
(1)根據(jù)線段的垂直平分線的性質(zhì)可得:PA=PB=PC;
(2)根據(jù)等腰三角形的性質(zhì)得:∠ABC=∠ACB=70°,由三角形的內(nèi)角和得:∠BAC=180°﹣2×70°=40°,由角平分線定義得:∠BAD=∠CAD=20°,最后利用三角形外角的性質(zhì)可得結(jié)論.
(1)如圖,PA=PB=PC,理由是:
∵AB=AC,AM平分∠BAC,
∴AD是BC的垂直平分線,
∴PB=PC,
∵EP是AB的垂直平分線,
∴PA=PB,
∴PA=PB=PC;
故答案為:PA=PB=PC;
(2)∵AB=AC,
∴∠ABC=∠ACB=70°,
∴∠BAC=180°﹣2×70°=40°,
∵AM平分∠BAC,
∴∠BAD=∠CAD=20°,
∵PA=PB=PC,
∴∠ABP=∠BAP=∠ACP=20°,
∴∠BPC=∠ABP+∠BAC+∠ACP=20°+40°+20°=80°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在平面直角坐標(biāo)系中,一組同心圓的圓心為坐標(biāo)原點(diǎn),它們的半徑分別為.按照“加"依次遞增; 一組平行線, ..分別過,且與過該點(diǎn)的圓相切.若半徑為的圓與在第一象限內(nèi)交于點(diǎn),半徑為的圓與在第象限內(nèi)相交于點(diǎn),半徑為的圓與在第一象限內(nèi)相交于點(diǎn)按照此規(guī)律,則點(diǎn)的坐標(biāo)是( )
A.B.
C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB是圓O的直徑,弦CD⊥AB,垂足為H,與AC平行的圓O的一條切線交CD的延長(zhǎng)線于點(diǎn)M,交AB的延長(zhǎng)線于點(diǎn)E,切點(diǎn)為F,連接AF交CD于點(diǎn)N.
(1)求證:CA=CN;
(2)連接DF,若cos∠DFA=,AN=,求圓O的直徑的長(zhǎng)度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知銳角內(nèi)接于⊙O, 于點(diǎn)D,連結(jié)AO.
⑴若.
①求證:;
②當(dāng)時(shí),求面積的最大值;
⑵點(diǎn)E在線段OA上,,連接DE,設(shè),(m、n是正數(shù)),若,求證:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某經(jīng)銷商銷售一種成本價(jià)為10元/kg的商品,已知銷售價(jià)不低于成本價(jià),且物價(jià)部門規(guī)定這種產(chǎn)品的銷售價(jià)不得高于18元/kg.在銷售過程中發(fā)現(xiàn)銷量y(kg)與售價(jià)x(元/kg)之間滿足一次函數(shù)關(guān)系,對(duì)應(yīng)關(guān)系如下表所示:
x | 12 | 14 | 15 | 17 |
y | 36 | 32 | 30 | 26 |
⑴求y與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
⑵若該經(jīng)銷商想使這種商品獲得平均每天168元的利潤(rùn),求售價(jià)應(yīng)定為多少元/kg?
⑶設(shè)銷售這種商品每天所獲得的利潤(rùn)為W元,求W與x之間的函數(shù)關(guān)系式;并求出該商品銷售單價(jià)定為多少元時(shí),才能使經(jīng)銷商所獲利潤(rùn)最大?最大利潤(rùn)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將矩形ABCD繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°至矩形AEFG,點(diǎn)D的旋轉(zhuǎn)路徑為,若AB=2,BC=4,則陰影部分的面積為( 。
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在在平面直角坐標(biāo)系中,拋物線的頂點(diǎn)坐標(biāo)為,點(diǎn)C(0,6)是拋物線與y的交點(diǎn).
(1)求拋物線與x軸的交點(diǎn)A,B的坐標(biāo)(A在B的左邊);
(2)設(shè)直線y=h(h為常數(shù),0<h<6)與直線BC交于點(diǎn)D,與y交于點(diǎn)E,與AC交于點(diǎn)F,連AE,定點(diǎn)M的坐標(biāo)為(﹣2,0).
①求h為何值時(shí),△AEF的面積S最大;
②問:是否存在這樣的直線y=h,使△BDM是等腰三角形?若存在,請(qǐng)求出h的值和點(diǎn)D的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在“五四青年節(jié)”來臨之際,某校舉辦了以“我的青春我做主”為主題的演講比賽. 并從參加比賽的學(xué)生中隨機(jī)抽取部分學(xué)生的演講成績(jī)進(jìn)行統(tǒng)計(jì)(等級(jí):A:優(yōu)秀,B:良好,C:一般,D:較差),并制作了如下統(tǒng)計(jì)圖表(部分信息未給出):
等級(jí) | 人數(shù) |
A | m |
B | 20 |
C | n |
D | 10 |
請(qǐng)根據(jù)統(tǒng)計(jì)圖表中的信息解答下列問題:
(1)這次共抽取了________名參加演講比賽的學(xué)生,統(tǒng)計(jì)圖中a=________,b=________;
(2)若該校學(xué)生共有2000人,如果都參加了演講比賽,請(qǐng)你估計(jì)成績(jī)達(dá)到優(yōu)秀的有多少人?
(3)若演講比賽成績(jī)?yōu)?/span>A等級(jí)的學(xué)生中恰好有2名女生,其余的學(xué)生為男生,從A等級(jí)的學(xué)生中抽取兩名同學(xué)參加全市演講比賽,求抽中一名男生和一名女生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列二次函數(shù)中有一個(gè)函數(shù)的圖像與x軸有兩個(gè)不同的交點(diǎn),這個(gè)函數(shù)是( )
A. B. C. D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com