【題目】在平面直角坐標(biāo)系中,點(diǎn)A坐標(biāo)為(0,3),x軸上點(diǎn)P(t,0),將線段AP繞點(diǎn)P順時(shí)針旋轉(zhuǎn)90°得到PE,過(guò)點(diǎn)E作直線l⊥x軸于D,過(guò)點(diǎn)A作AF⊥直線l于F.
(1)當(dāng)點(diǎn)E是DF的中點(diǎn)時(shí),求直線PE的函數(shù)表達(dá)式.
(2)當(dāng)t=5時(shí),求△PEF的面積.
(3)在直線l上是否存在點(diǎn)G,使得∠APO=∠PFD+∠PGD?若存在,試用t的代數(shù)式表示點(diǎn)G的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
【答案】(1)y=;(2)17;(3)G(3+t,﹣).
【解析】
(1)證明Rt△APO≌Rt△PED(HL),得到ED==PO,DO=OP+PD=OP+AO=3+=,求出點(diǎn)E(,),P(,0),將點(diǎn)代入解析式即可求解;
(2)由(1)的全等可得到OD=8,DF=3,所以S△APE=5×8-×3×5×2-×2×8=17;
(3)假設(shè)在直線l上是否存在點(diǎn)G,使得∠APO=∠PFD+∠PGD,可以得到A,P,E,F四點(diǎn)共圓,所以∠PAE=∠PFE=45°,PD=FE=3,FP=3,
設(shè)E(m,n),由AP⊥PE,,再由等腰直角三角形PDF可得PD=3,D(3+t,0),E(3+t,t)可以證明△APF∽△PGF,所以,即18=(3+t)(3+DG),得到DG=,進(jìn)而取得G點(diǎn)坐標(biāo).
(1)∵線段AP繞點(diǎn)P順時(shí)針旋轉(zhuǎn)90°得到PE,
∴AP=PE,∠APE=90°,
∵∠APO+∠PED=∠APO+∠OAP=90°,
∴∠PED=∠APO,
∴Rt△APO≌Rt△PED(HL),
∴OP=ED,AO=PD,
∵OA=3,點(diǎn)E是DF的中點(diǎn),
∴ED==PO,
∴DO=OP+PD=OP+AO=3+=,
∴E(,),P(,0)
設(shè)直線PE的解析式為y=kx+b,
∴,
∴,
∴y=;
(2)∵Rt△APO≌Rt△PED,
∴OP=ED,AO=PD,
∵OA=5,OP=3,
∴OD=8,DF=3,
∴S△APE=5×8﹣×3×5×2﹣×8=17;
(3)假設(shè)在直線l上是否存在點(diǎn)G,使得∠APO=∠PFD+∠PGD,
∵AP⊥PE,AF⊥FE,
∴A,P,E,F四點(diǎn)共圓,
∴∠PAE=∠PFE=45°,
∴∠APF=∠PGD,
∴PD=FE=3,
∴FP=3,
設(shè)E(m,n),
∵AP⊥PE,
∴,
∵PD=3,
∴D(3+t,0),
∴m=3+t,
∴n=t,
∴E(3+t,t)
∴△APF∽△PGF,
∴,
∴18=(3+t)(3+DG),
∴DG=,
∴G(3+t,﹣);
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在歌唱比賽中,一位歌手分別轉(zhuǎn)動(dòng)如下的兩個(gè)轉(zhuǎn)盤(每個(gè)轉(zhuǎn)盤都被分成3等份)一次,根據(jù)指針指向的歌曲名演唱兩首曲目.
(1)轉(zhuǎn)動(dòng)轉(zhuǎn)盤①時(shí),該轉(zhuǎn)盤指針指向歌曲“3”的概率是 ;
(2)若允許該歌手替換他最不擅長(zhǎng)的歌曲“3”,即指針指向歌曲“3”時(shí),該歌手就選擇自己最擅長(zhǎng)的歌曲“1”, 請(qǐng)用樹(shù)形圖或列表法中的一種,求他演唱歌曲“1”和“4”的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】目前世界上最長(zhǎng)的跨海大橋——杭州灣跨海大橋通車了.通車后,地到寧波港的路程比原來(lái)縮短了.已知運(yùn)輸車速度不變時(shí),行駛時(shí)間將從原來(lái)的縮短到.
(1)求地經(jīng)杭州灣跨海大橋到寧波港的路程.
(2)若貨物運(yùn)輸費(fèi)用包括運(yùn)輸成本和時(shí)間成本,某車貨物從地到寧波港的運(yùn)輸成本是每千米元,時(shí)間成本是每時(shí)元,那么該車貨物從地經(jīng)杭州灣跨海大橋到寧波港的運(yùn)輸費(fèi)用是多少元?
(3)A地準(zhǔn)備開(kāi)辟寧波方向的外運(yùn)路線,即貨物從地經(jīng)杭州灣跨海大橋到寧波港,再?gòu)膶幉ǜ圻\(yùn)到地.若有一批貨物(不超過(guò)車)從地按外運(yùn)路線運(yùn)到地的運(yùn)費(fèi)需元,其中從地經(jīng)杭州灣跨海大橋到寧波港的每車運(yùn)輸費(fèi)用與(2)中相同,從寧波港到地的海上運(yùn)費(fèi)對(duì)一批不超過(guò)車的貨物計(jì)費(fèi)方式是:車元,當(dāng)貨物每增加車時(shí),每車的海上運(yùn)費(fèi)就減少元,問(wèn)這批貨物有幾車?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,這是某水庫(kù)大壩截面示意圖,張強(qiáng)在水庫(kù)大壩頂CF上的瞭望臺(tái)D處,測(cè)得水面上的小船A的俯角為40°,若DE=3米,CE=2米,CF平行于水面AB,瞭望臺(tái)DE垂直于壩頂CF,迎水坡BC的坡度i=4:3,坡長(zhǎng)BC=10米,求小船A距坡底B處的長(zhǎng).(結(jié)果保留0.1米)(參考數(shù)據(jù):sin40°≈0.64,cos40°=0.77,tan40°≈0.84)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,AC=4,BC=2,點(diǎn)D在射線AB上,在構(gòu)成的圖形中,△ACD為等腰三角形,且存在兩個(gè)互為相似的三角形,則CD的長(zhǎng)是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】2018年某市學(xué)業(yè)水平體育測(cè)試即將舉行,某校為了解同學(xué)們的訓(xùn)練情況,從九年級(jí)學(xué)生中隨機(jī)抽取部分學(xué)生進(jìn)行了體育測(cè)試(把成績(jī)分為四個(gè)等級(jí):A級(jí):優(yōu)秀;B級(jí):良好;C級(jí):及格;D級(jí):不及格),并將測(cè)試結(jié)果繪成了如下兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)根據(jù)統(tǒng)計(jì)圖中的信息解答下列問(wèn)題:
(1)求本次抽測(cè)的學(xué)生人數(shù);
(2)求扇形圖中∠α的度數(shù),并把條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)在測(cè)試中甲乙、丙、丁四名同學(xué)表現(xiàn)非常優(yōu)秀,現(xiàn)決定從這四名同學(xué)中任選兩名給大家介紹訓(xùn)練經(jīng)驗(yàn),求恰好選中甲、乙兩名同學(xué)的概率(用樹(shù)狀圖或列表法解答).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本小題滿分10分)
如圖,在□ABCD中,以點(diǎn)A為圓心,AB長(zhǎng)為半徑畫弧交AD于點(diǎn)F;再分別以點(diǎn)B、F為圓心,大于BF的相同長(zhǎng)為半徑畫弧,兩弧交于點(diǎn)P;連接AP并延長(zhǎng)交BC于點(diǎn)E,連接EF,則所得四邊形ABEF是菱形.
(1)根據(jù)以上尺規(guī)作圖的過(guò)程,求證四邊形ABEF是菱形;
(2)若菱形ABEF的周長(zhǎng)為16,AE=4,求∠C的大。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】等邊△ABC與正方形DEFG如圖1放置,其中D,E兩點(diǎn)分別在AB,BC上,且BD=BE.
(1)求∠DEB的度數(shù);
(2)當(dāng)正方形DEFG沿著射線BC方向以每秒1個(gè)單位長(zhǎng)度的速度平移時(shí),CF的長(zhǎng)度y隨著運(yùn)動(dòng)時(shí)間變化的函數(shù)圖象如圖2所示,且當(dāng)t=時(shí),y有最小值1;
①求等邊△ABC的邊長(zhǎng);
②連結(jié)CD,在平移的過(guò)程中,求當(dāng)△CEF與△CDE同時(shí)為等腰三角形時(shí)t的值;
③從平移運(yùn)動(dòng)開(kāi)始,到GF恰落在AC邊上時(shí),請(qǐng)直接寫出△CEF外接圓圓心的運(yùn)動(dòng)路徑的長(zhǎng)度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,為測(cè)量學(xué)校旗桿AB的高度,小明從旗桿正前方3米處的點(diǎn)C出發(fā),沿坡度為i=1:的斜坡CD前進(jìn)2米到達(dá)點(diǎn)D,在點(diǎn)D處放置測(cè)角儀,測(cè)得旗桿頂部A的仰角為37°,量得測(cè)角儀DE的高為1.5米.A、B、C、D、E在同一平面內(nèi),且旗桿和測(cè)角儀都與地面垂直.
(1)求點(diǎn)D的鉛垂高度(結(jié)果保留根號(hào));
(2)求旗桿AB的高度(精確到0.1).
(參考數(shù)據(jù):sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,≈1.73.)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com