【題目】如圖,為測量學(xué)校旗桿AB的高度,小明從旗桿正前方3米處的點C出發(fā),沿坡度為i=1:的斜坡CD前進(jìn)2米到達(dá)點D,在點D處放置測角儀,測得旗桿頂部A的仰角為37°,量得測角儀DE的高為1.5米.A、B、C、D、E在同一平面內(nèi),且旗桿和測角儀都與地面垂直.

(1)求點D的鉛垂高度(結(jié)果保留根號);

(2)求旗桿AB的高度(精確到0.1).

(參考數(shù)據(jù):sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,≈1.73.)

【答案】(1)點D的鉛垂高度是米(2)旗桿AB的高度約為7.7米

【解析】試題分析:(1)延長ED交射線BC于點H,根據(jù)坡度為1:,可得∠DCH =30°,由直角三角形中30°角所對的邊等于斜邊的一半,得DH=

(2)求出EFFB的值,在RtAEF中,由正切求得AF的值,即可求得AB的值.

試題解析:(1)延長ED交射線BC于點H.由題意得DHBC.

RtCDH中,∠DHC=90°,tanDCH=.

DCH=30°.

CD=2DH.

CD=,

DH=,CH=3 .

答:點D的鉛垂高度是.

(2)過點EEFABF.

由題意得,∠AEF即為點E觀察點A時的仰角,

AEF=37°.

EFAB,ABBC,EDBC,

BFE=B=BHE=90°.

四邊形FBHE為矩形.

EF=BH=BC+CH=6.

FB=EH=ED+DH=1.5+.

RtAEF中,∠AFE=90°,AF=EF·tanAEF≈6×0.75≈4.5.

AB=AF+FB=6+ ≈6+1.73≈7.7.

答:旗桿AB的高度約為7.7.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)

1該二次函數(shù)圖象的對稱軸是x ;

2若該二次函數(shù)的圖象開口向下當(dāng), 的最大值是2求當(dāng), 的最小值

3)若對于該拋物線上的兩點, 當(dāng), ,均滿足,請結(jié)合圖象直接寫出的最大值

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列命題中正確的是( 。

A.在直角三角形中,兩條邊的平方和等于第三邊的平方

B.如果一個三角形兩邊的平方差等于第三邊的平方,那么這個三角形是直角三角形

C.在△ABC中,∠A,∠B,∠C的對邊分別為a,b,c,若a2+b2c2,則∠A90°

D.在△ABC中,若a3b4,則c5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果點Mk1k+1)關(guān)于y軸的對稱點在第四象限內(nèi),則一次函數(shù)y=(k1x+k的圖象不經(jīng)過第(  )象限.

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,二次函數(shù)y=-2x24xm的圖象與x軸的一個交點為A(3,0)另一個交點為B,且與y軸交于點C.

(1)m的值及點B的坐標(biāo);

(2)△ABC的面積;

(3)該二次函數(shù)圖象上有一點D(x,y)使SABDSABC,請求出D點的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】新型冠狀病毒肺炎疫情發(fā)生后,全社會積極參與疫情防控工作,某市為了盡快完成100萬只口罩的生產(chǎn)任務(wù),安排甲、乙兩個大型工廠完成.已知甲廠每天能生產(chǎn)口罩的數(shù)量是乙廠每天能生產(chǎn)口罩的數(shù)量的1.5倍,并且在獨立完成60萬只口罩的生產(chǎn)任務(wù)時,甲廠比乙廠少用5天.

1)求甲、乙每天能生產(chǎn)多少萬只口罩?

2)問至少應(yīng)安排兩個工廠工作多少天才能完成任務(wù)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知在△ABC中,∠ACB=90°BC=2,AC=4,點D在射線BC上,以點D為圓心,BD為半徑畫弧交邊AB于點E,過點EEFAB交邊AC于點F,射線ED交射線AC于點G

1)求證:△EFG∽△AEG;

2)設(shè)FG=x,EFG的面積為y,求y關(guān)于x的函數(shù)解析式并寫出定義域;

3)聯(lián)結(jié)DF,當(dāng)△EFD是等腰三角形時,請直接寫出FG的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】從三角形(不是等腰三角形)一個頂點引出一條射線于對邊相交,頂點與交點之間的線段把這個三角形分割成兩個小三角形,如果分得的兩個小三角形中一個為等腰三角形,另一個與原三角形相似,我們把這條線段叫做這個三角形的完美分割線.

1)如圖1,在ABC中,CD為角平分線,∠A=40°,B=60°,求證:CDABC的完美分割線.

2)在ABC中,∠A=48°CDABC的完美分割線,且ACD為等腰三角形,求∠ACB的度數(shù).

3)如圖2ABC中,AC=2BC=,CDABC的完美分割線,且ACD是以CD為底邊的等腰三角形,求完美分割線CD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:,

(1)求B;(用含a、b的代數(shù)式表示)

(2)比較A與B的大。

查看答案和解析>>

同步練習(xí)冊答案