【題目】如圖①,在平面直角坐標(biāo)系中,拋物線的對稱軸為直線,將直線繞著點順時針旋轉(zhuǎn)的度數(shù)后與該拋物線交于兩點(點在點的左側(cè)),點是該拋物線上一點

1)若,求直線的函數(shù)表達(dá)式

2)若點將線段分成的兩部分,求點的坐標(biāo)

3)如圖②,在(1)的條件下,若點軸左側(cè),過點作直線軸,點是直線上一點,且位于軸左側(cè),當(dāng)以,,為頂點的三角形與相似時,求的坐標(biāo)

【答案】1;(2;(3,,

【解析】

1)根據(jù)題意易得點M、P的坐標(biāo),利用待定系數(shù)法來求直線AB的解析式;

2)分兩種情況根據(jù)點A、點B在直線y=x+2上列式求解即可;

3)分兩種情況,利用相似三角形的性質(zhì)列式求解即可.

(1)如圖①,設(shè)直線AB與x軸的交點為M.


∵∠OPA=45°,
∴OM=OP=2,即M(-2,0).
設(shè)直線AB的解析式為y=kx+b(k≠0),將M(-2,0),P(0,2)兩點坐標(biāo)代入,得

,
解得,
故直線AB的解析式為y=x+2;

2)①

設(shè)a0

∵點A、點B在直線y=x+2上和拋物線y=x2的圖象上,

,

,

解得,(舍去)

設(shè)a0

∵點A、點B在直線y=x+2上和拋物線y=x2的圖象上,

,

解得:(舍去)

綜上

3,

,

此時關(guān)于軸對稱,為等腰直角三角形

此時滿足,左側(cè)還有也滿足

,,,四點共圓,易得圓心為中點

設(shè)

且不與重合

,

為正三角形,

,則,

解得,

解得,

綜上所述,滿足條件的點M的坐標(biāo)為:,,.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知中,,,,將繞點順時針旋轉(zhuǎn)得到,點、分別為、的中點,若點剛好落在邊上,則______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是半圓O的直徑,D為弦BC的中點,延長OD交弧BC于點E,點FOD的延長線上一點且滿足∠OBC=∠OFC,

(1)求證:CF為⊙O的切線;

(2)若四邊形ACFD是平行四邊形,求sinBAD的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,△ABC的頂點坐標(biāo)分別為A-2,4),B4,4),C(60.

1)△ABC的面積是 .

2)請以原點O為位似中心,畫出△A'B'C',使它與△ABC的相似比為12,變換后點A、B的對應(yīng)點分別為點A'、B',點B'在第一象限;

3)若Pa,b)為線段BC上的任一點,則變換后點P的對應(yīng)點P' 的坐標(biāo)為 .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,是一建筑物造型的縱截面,曲線是拋物線的一部分,該拋物線開口向右、對稱軸正好是水平線,是與水平線垂直的兩根支柱,米,米,.

1)如圖1,為了安全美觀,準(zhǔn)備拆除支柱、,在水平線上另找一點作為地面上的支撐點,用固定材料連接、,對拋物線造型進(jìn)行支撐加固,用料最省時點,之間的距離是_________.

2)如圖2,在水平線上增添一張米長的椅子右側(cè)),用固定材料連接,對拋物線造型進(jìn)行支撐加固,用料最省時點,之間的距離是_______________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點O為∠ABC的邊上的一點,過點OOMAB于點,到點的距離等于線段OM的長的所有點組成圖形.圖形W與射線交于E,F兩點(點在點F的左側(cè)).

1)過點于點,如果BE=2,,求MH的長;

2)將射線BC繞點B順時針旋轉(zhuǎn)得到射線BD,使得∠,判斷射線BD與圖形公共點的個數(shù),并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一次函數(shù)的圖像與x軸相交于點A,與y軸相交于點B,二次函數(shù)圖像經(jīng)過點AB,與x軸相交于另一點C

1)求a、b的值;

2)在直角坐標(biāo)系中畫出該二次函數(shù)的圖像;

3)求∠ABC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,以AB為直徑作半圓O,交BC于點D,連接AD.過點D作DE⊥AC,垂足為點E.

(1)求證:DE是O的切線;

(2)當(dāng)O半徑為3,CE=2時,求BD長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知ABC,以AC為直徑的⊙OAB于點D,點E為弧AD的中點,連接CEAB于點F,且BF=BC

1)求證:BC是⊙O的切線;

2)若⊙O的半徑為2=,求CE的長.

查看答案和解析>>

同步練習(xí)冊答案