【題目】如圖,長方形ABCD中AD∥BC,邊AB=4,BC=8.將此長方形沿EF折疊,使點(diǎn)D與點(diǎn)B重合,點(diǎn)C落在點(diǎn)G處.
(1)試判斷△BEF的形狀,并說明理由;
(2)求△BEF的面積.
【答案】(1)△BEF是等腰三角形,理由見解析;(2)10.
【解析】
(1)根據(jù)翻折不變性和平行線的性質(zhì)得到兩個(gè)相等的角,根據(jù)等角對(duì)等邊即可判斷△BEF是等腰三角形;
(2)根據(jù)翻折的性質(zhì)可得BE=DE,BG=CD,∠EBG=∠ADC=90°,設(shè)BE=DE=x,表示出AE=8x,然后在Rt△ABE中,利用勾股定理列出方程求出x的值,即為BE的值,再根據(jù)同角的余角相等求出∠ABE=∠GBF,然后利用“角邊角”證明△ABE和△GBF全等,根據(jù)全等三角形對(duì)應(yīng)邊相等可得BF=BE,再根據(jù)三角形的面積公式列式計(jì)算即可得解.
(1)△BEF是等腰三角形.
∵ED∥FC,
∴∠DEF=∠BFE,
根據(jù)翻折不變性得到∠DEF=∠BEF,
故∠BEF=∠BFE.
∴BE=BF.
△BEF是等腰三角形;
(2)∵矩形ABCD沿EF折疊點(diǎn)B與點(diǎn)D重合,
∴BE=DE,BG=CD,∠EBG=∠ADC=90°,∠G=∠C=90°,
∵AB=CD,
∴AB=BG,
設(shè)BE=DE=x,則AE=AB﹣DE=8﹣x,
在Rt△ABE中,AB2+AE2=BE2,
即42+(8﹣x)2=x2,
解得x=5,
∴BE=5,
∵∠ABE+∠EBF=∠ABC=90°,
∠GBF+∠EBF=∠EBG=90°,
∴∠ABE=∠GBF,
在△ABE和△MBF中,
,
∴△ABE≌△GBF(ASA),
∴BF=BE=5,
∴△EBF的面積=×5×4=10.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AE∥BF,AC平分∠BAE,且交BF于點(diǎn)C,BD平分∠ABF,且交AE于點(diǎn)D,連接CD.
(1)求證:四邊形ABCD是菱形;
(2)若∠ADB=30°,BD=6,求AD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ABC=90°,tan∠BAC=2,A(0,a),B(b,0),點(diǎn)C在第二象限,BC與y軸交于點(diǎn)D(0,c),若y軸平分∠BAC,則點(diǎn)C的坐標(biāo)不能表示為( 。
A. (b+2a,2b) B. (﹣b﹣2c,2b)
C. (﹣b﹣c,﹣2a﹣2c) D. (a﹣c,﹣2a﹣2c)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,拋物線y=x2﹣x+與x軸分別交于A、B兩點(diǎn)(A點(diǎn)在B點(diǎn)的左側(cè)),交y軸于點(diǎn)F.
(1)A點(diǎn)坐標(biāo)為 ;B點(diǎn)坐標(biāo)為 ;F點(diǎn)坐標(biāo)為 ;
(2)如圖1,C為第一象限拋物線上一點(diǎn),連接AC,BF交于點(diǎn)M,若BM=FM,在直線AC下方的拋物線上是否存在點(diǎn)P,使S△ACP=4,若存在,請求出點(diǎn)P的坐標(biāo),若不存在,請說明理由;
(3)如圖2,D、E是對(duì)稱軸右側(cè)第一象限拋物線上的兩點(diǎn),直線AD、AE分別交y軸于M、N兩點(diǎn),若OMON=,求證:直線DE必經(jīng)過一定點(diǎn).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(12分)菱形ABCD中,兩條對(duì)角線AC,BD相交于點(diǎn)O,∠MON+∠BCD=180°,∠MON繞點(diǎn)O旋轉(zhuǎn),射線OM交邊BC于點(diǎn)E,射線ON交邊DC于點(diǎn)F,連接EF.
(1)如圖1,當(dāng)∠ABC=90°時(shí),△OEF的形狀是 ;
(2)如圖2,當(dāng)∠ABC=60°時(shí),請判斷△OEF的形狀,并說明理由;
(3)在(1)的條件下,將∠MON的頂點(diǎn)移到AO的中點(diǎn)O′處,∠MO′N繞點(diǎn)O′旋轉(zhuǎn),仍滿足∠MO′N+∠BCD=180°,射線O′M交直線BC于點(diǎn)E,射線O′N交直線CD于點(diǎn)F,當(dāng)BC=4,且時(shí),直接寫出線段CE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】設(shè)是的平均數(shù),即,則方差,它反映了這組數(shù)的波動(dòng)性,
(1)證明:對(duì)任意實(shí)數(shù)a,x1a,x2a,…,xna,與x1,x2,…,xn 方差相同;
(2)證明;
(3)以下是我校初三(1)班 10 位同學(xué)的身高(單位:厘米):
169,172,163,173,175,168,170,167,170,171,計(jì)算這組數(shù)的方差.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,如圖,拋物線經(jīng)過直線與坐標(biāo)軸的兩個(gè)交點(diǎn).此拋物線與軸的另一個(gè)交點(diǎn)為.拋物線的頂點(diǎn)為.
求此拋物線的解析式;
若點(diǎn)為拋物線上一動(dòng)點(diǎn),是否存在點(diǎn).使與的面積相等?若存在,求點(diǎn)的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD是矩形,線段AC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)得到線段AF,CF、BA的延長線交于點(diǎn)E,若∠E=∠FAE,∠ACB=21°,則∠ECD的度數(shù)是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】目前我國建立了比較完善的經(jīng)濟(jì)困難學(xué)生資助體系.某校去年上半年發(fā)放給每個(gè)經(jīng)濟(jì)困難學(xué)生389元,今年上半年發(fā)放了438元,設(shè)每半年發(fā)放的資助金額的平均增長率為,則下面列出的方程中正確的是( )
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com