【題目】如圖,是的直徑,與相切于點,過點作的平行線交于點,與的延長線相交于點.
試探究與的位置關系,并說明理由;
已知,,,請你思考后,選用以上適當?shù)臄?shù)據(jù),設計出計算的半徑的一種方案:①你選用的已知數(shù)是________;②寫出求解過程.(結(jié)果用字母表示)
科目:初中數(shù)學 來源: 題型:
【題目】閱讀:
對于兩個不等的非零實數(shù).若分式的值為零,則或又因為.所以關于的方程有兩個根分別為.
應用上面的結(jié)論解答下列問題:
(1)方程的兩個解中較小的一個為 .
(2)關于解的方程,首先我們兩邊同加成,則 或 ,兩個解分別為, 則 , .
(3)關于的方程的兩個解分別為,求的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,點P是等邊三角形ABC內(nèi)的一點,且PA=6,PB=8,PC=10,若將△PAC繞點A逆時針旋轉(zhuǎn)后,得到△P′AB,則∠APB等于( )
A.150° B.105° C.120° D.90°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,4張背面完全相同的紙牌(用①、②、③、④表示),在紙牌的正面分別寫有四個不同的條件,小明將這4張紙牌背面朝上洗勻后,先隨機摸出一張(不放回),再隨機摸出一張.
(1)用樹狀圖(或列表法)表示兩次摸牌出現(xiàn)的所有可能結(jié)果;
(2)以兩次摸出牌上的結(jié)果為條件,求能判斷四邊形ABCD是平行四邊形的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在長方形紙片ABCD中,點E是邊CD上的一點,將△AED沿AE所在的直線折疊,使點D落在點F處.
(1)如圖1,若點F落在對角線AC上,且∠BAC=54°,則∠DAE的度數(shù)為 °.
(2)如圖2,若點F落在邊BC上,且AB=6,AD=10,求CE的長.
(3)如圖3,若點E是CD的中點,AF的沿長線交BC于點G,且AB=6,AD=10,求CG的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在正方形ABCD中,AD=6,點E是邊CD上的動點(點E不與端點C,D重合),AE的垂直平分線FG分別交AD,AE,BC于點F,H,G.當=時,DE的長為( )
A. 2 B. C. D. 4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在 A 時測得某樹(垂直于地面)的影長為 4 米,B 時又測得該樹的影長為 16 米,若兩次日 照的光線互相垂直,則樹的高度為_____米.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知甲,乙兩名自行車騎手均從P地出發(fā),騎車前往距P地60千米的Q地,當乙騎手出發(fā)了1.5小時,此時甲,乙兩名騎手相距6千米,因甲騎手接到緊急任務,故甲到達Q地后立即又原路返回P地甲,乙兩名騎手距P地的路程y(千米)與時間x(時)的函數(shù)圖象如圖所示.(其中折線O﹣A﹣B﹣C﹣D(實線)表示甲,折線O﹣E﹣F﹣G(虛線)表示乙)
(1)甲騎手在路上停留 小時,甲從Q地返回P地時的騎車速度為 千米/時;
(2)求乙從P地到Q地騎車過程中(即線段EF)距P地的路程y(千米)與時間x(時)的函數(shù)關系式及自變量x的取值范圍;
(3)在乙騎手出發(fā)后,且在甲,乙兩人相遇前,求時間x(時)的值為多少時,甲,乙兩騎手相距8千米.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知PA、PB是⊙O的切線,A、B為切點,連接AO并延長,交PB的延長線于點C,連接PO,交⊙O于點D.
(1)如圖①,若∠AOP=65°,求∠C的大小;
(2)如圖②,連接BD,若BD∥AC,求∠C的大小.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com