【題目】已知直線(xiàn)y=x+3與x軸、y軸分別交于A,B點(diǎn),與y=(x<0)的圖象交于C、D點(diǎn),E是點(diǎn)C關(guān)于點(diǎn)A的中心對(duì)稱(chēng)點(diǎn),EF⊥OA于F,若△AOD的面積與△AEF的面積之和為時(shí),則k=_____.
【答案】﹣2.
【解析】
先求出A、B兩個(gè)點(diǎn)的坐標(biāo),再設(shè)C點(diǎn)的坐標(biāo)為(x1,x1+3),D點(diǎn)的坐標(biāo)為(x2,x2+3)(x1<x2),聯(lián)立y=x+3與,則x1、x2是一元二次方程x2+3x-k=0的兩個(gè)根,根據(jù)方程根的定義及一元二次方程根與系數(shù)的關(guān)系,并結(jié)合已知面積的條件即可求出k的值.
解:∵直線(xiàn)與x軸、y軸分別交于A、B點(diǎn),
∴A(-3,0),B(0,3).
把代入,整理,得.
設(shè)C點(diǎn)的坐標(biāo)為,D點(diǎn)的坐標(biāo)為,
則 、是一元二次方程的兩個(gè)根,
∴,;
∵E是點(diǎn)C關(guān)于點(diǎn)A的中心對(duì)稱(chēng)點(diǎn),
∴E點(diǎn)坐標(biāo)為:
∵,
∴
即:,
∴,
∴
將,代入上式,得,
∴
∴,
故答案為:-2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我們規(guī)定:平面內(nèi)點(diǎn)A到圖形G上各個(gè)點(diǎn)的距離的最小值稱(chēng)為該點(diǎn)到這個(gè)圖形的最小距離d,點(diǎn)A到圖形G上各個(gè)點(diǎn)的距離的最大值稱(chēng)為該點(diǎn)到這個(gè)圖形的最大距離D,定義點(diǎn)A到圖形G的距離跨度為R=D-d.
(1)①如圖1,在平面直角坐標(biāo)系xOy中,圖形G1為以O為圓心,2為半徑的圓,直接寫(xiě)出以下各點(diǎn)到圖形G1的距離跨度:
A(1,0)的距離跨度______________;
B(-, )的距離跨度____________;
C(-3,-2)的距離跨度____________;
②根據(jù)①中的結(jié)果,猜想到圖形G1的距離跨度為2的所有的點(diǎn)組成的圖形的形狀是______________.
(2)如圖2,在平面直角坐標(biāo)系xOy中,圖形G2為以D(-1,0)為圓心,2為半徑的圓,直線(xiàn)y=k(x-1)上存在到G2的距離跨度為2的點(diǎn),求k的取值范圍.
(3)如圖3,在平面直角坐標(biāo)系xOy中,射線(xiàn)OP:y=x(x≥0),⊙E是以3為半徑的圓,且圓心E在x軸上運(yùn)動(dòng),若射線(xiàn)OP上存在點(diǎn)到⊙E的距離跨度為2,求出圓心E的橫坐標(biāo)xE的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,某興趣小組用無(wú)人機(jī)進(jìn)行航拍測(cè)高,無(wú)人機(jī)從1號(hào)樓和2號(hào)樓的地面正中間B點(diǎn)垂直起飛到高度為50米的A處,測(cè)得1號(hào)樓頂部E的俯角為60°,測(cè)得2號(hào)樓頂部F的俯角為45°.已知1號(hào)樓的高度為20米,則2號(hào)樓的高度為_____米(結(jié)果保留根號(hào)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在 Rt△ABC 中BC=2,以 BC 的中點(diǎn) O 為圓心的⊙O 分別與 AB,AC 相切于 D,E 兩點(diǎn),的長(zhǎng)為( )
A.B.C.πD.2π
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】.E為□ABCD邊AD上一點(diǎn),將ABE沿BE翻折得到FBE,點(diǎn)F在BD上,且EF=DF.若∠C=52°,則∠ABE=____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知Rt△ABC,AC=8,AB=4,以點(diǎn)B為圓心作圓,當(dāng)⊙B與線(xiàn)段AC只有一個(gè)交點(diǎn)時(shí),則⊙B的半徑的取值范圍是( )
A.rB =B.4 < rB ≤
C.rB = 或4 < rB ≤D.rB為任意實(shí)數(shù)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在Rt△ABC中,∠BAC=90°,BC=10,tan∠ABC=,點(diǎn)O是AB邊上動(dòng)點(diǎn),以O為圓心,OB為半徑的⊙O與邊BC的另一交點(diǎn)為D,過(guò)點(diǎn)D作AB的垂線(xiàn),交⊙O于點(diǎn)E,聯(lián)結(jié)BE、AE
(1)如圖(1),當(dāng)AE∥BC時(shí),求⊙O的半徑長(zhǎng);
(2)設(shè)BO=x,AE=y,求y關(guān)于x的函數(shù)關(guān)系式,并寫(xiě)出定義域;
(3)若以A為圓心的⊙A與⊙O有公共點(diǎn)D、E,當(dāng)⊙A恰好也過(guò)點(diǎn)C時(shí),求DE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下面是小明設(shè)計(jì)的“在一個(gè)平行四邊形內(nèi)作菱形”的尺規(guī)作圖過(guò)程.
已知:四邊形是平行四邊形.
求作:菱形(點(diǎn)在上,點(diǎn)在上).
作法:①以為圓心,長(zhǎng)為半徑作弧,交于點(diǎn);
②以為圓心,長(zhǎng)為半徑作弧,交于點(diǎn);
③連接.所以四邊形為所求作的菱形.
根據(jù)小明設(shè)計(jì)的尺規(guī)作圖過(guò)程,
(1)使用直尺和圓規(guī),補(bǔ)全圖形;(保留作圖痕跡)
(2)完成下面的證明.
證明:∵,,
∴ = .
在中,.
即.
∴四邊形為平行四邊形.
∵,
∴四邊形為菱形( )(填推理的依據(jù)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】AB為⊙O直徑,C為⊙O上的一點(diǎn),過(guò)點(diǎn)C的切線(xiàn)與AB的延長(zhǎng)線(xiàn)相交于點(diǎn)D,CA=CD.
(1)連接BC,求證:BC=OB;
(2)E是中點(diǎn),連接CE,BE,若BE=2,求CE的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com