【題目】我們規(guī)定:平面內(nèi)點A到圖形G上各個點的距離的最小值稱為該點到這個圖形的最小距離d,點A到圖形G上各個點的距離的最大值稱為該點到這個圖形的最大距離D,定義點A到圖形G的距離跨度為R=D-d.
(1)①如圖1,在平面直角坐標(biāo)系xOy中,圖形G1為以O為圓心,2為半徑的圓,直接寫出以下各點到圖形G1的距離跨度:
A(1,0)的距離跨度______________;
B(-, )的距離跨度____________;
C(-3,-2)的距離跨度____________;
②根據(jù)①中的結(jié)果,猜想到圖形G1的距離跨度為2的所有的點組成的圖形的形狀是______________.
(2)如圖2,在平面直角坐標(biāo)系xOy中,圖形G2為以D(-1,0)為圓心,2為半徑的圓,直線y=k(x-1)上存在到G2的距離跨度為2的點,求k的取值范圍.
(3)如圖3,在平面直角坐標(biāo)系xOy中,射線OP:y=x(x≥0),⊙E是以3為半徑的圓,且圓心E在x軸上運動,若射線OP上存在點到⊙E的距離跨度為2,求出圓心E的橫坐標(biāo)xE的取值范圍.
【答案】(1)①2;2,4;②以O為圓心,半徑為1的圓;(2)-≤k≤;(3)-1≤xE≤2 .
【解析】試題分析:(1)①先根據(jù)跨度的定義先確定出點到圓的最小距離d和最大距離D,即可得出跨度;
②分點在圓內(nèi)和圓外兩種情況同①的方法計算,判定得出結(jié)論;
(2)先判斷出存在的點P必在圓O內(nèi),設(shè)出點P的坐標(biāo),利用點P到圓心O的距離的2倍是點P到圓的距離跨度,建立方程,由于存在距離跨度是2的點,此方程有解即可得出k的范圍.
(3)同(2)方法判斷出存在的點P在圓C內(nèi)部,由于在射線OA上存在距離跨度是2的點,同(2)的方法建立方程,用一元二次方程根與系數(shù)的關(guān)系和根的判別式即可確定出范圍.
試題解析:
(1)①∵圖形G1為以O為圓心,2為半徑的圓,
∴直徑為4,
∵A(1,0),OA=1,
∴點A到⊙O的最小距離d=1,
點A到⊙O的最大距離D=3,
∴點A到圖形G1的距離跨度R=D-d=3-1=2;
∵B
∴點B到⊙O的最小距離d=BG=OG-OB=1,
點B到⊙O的最大距離D=BF=FO+OB=2+1=3,
∴點B到圖形G1的距離跨度R=D-d=3-1=2;
∵C(-3,-2),
∴OC=
∴點C到⊙O的最小距離d=CD=OC-OD=-2.
點C到⊙O的最大距離D=CE=OC+OE=2+
∴點C到圖形G1的距離跨度R=D-d=2+-(-2))=4;
故答案為2,2,4.
②a、設(shè)⊙O內(nèi)一點P的坐標(biāo)為(x,y),
∴OP=
∴點P到⊙O的最小距離d=2-OP,點P到⊙O的最大距離D=2+OP,
∴點P到圖形G1的距離跨度R=D-d=2+OP-(2-OP)=2OP;
∵圖形G1的距離跨度為2,
∴2OP=2,
∴OP=1,
∴=1
∴x2+y2=1,
即:到圖形G1的距離跨度為2的所有的點組成的圖形的形狀是以點O為圓心,1為半徑的圓.
b、設(shè)⊙O外一點Q的坐標(biāo)為(x,y),
∴OQ=
∴點Q到⊙O的最小距離d=OQ-2,點P到⊙O的最大距離D=OQ+2,
∴點P到圖形G1的距離跨度R=D-d=OQ+2-(OQ-2)=4;
∵圖形G1的距離跨度為2,
∴此種情況不存在,
所以,到圖形G1的距離跨度為2的所有的點組成的圖形的形狀是以點O為圓心,1為半徑的圓.
故答案為:圓;
(2)設(shè)直線y=k(x+1)上存在到G2的距離跨度為2的點P(m,k(m+1)),
∴OP=
由(1)②知,圓內(nèi)一點到圖形圓的跨度是此點到圓心距離的2倍,圓外一點到圖形圓的跨度是此圓的直徑,
∵圖形G2為以C(1,0)為圓心,2為半徑的圓,到G2的距離跨度為2的點,
∴距離跨度小于圖形G2的圓的直徑4,
∴點P在圖形G2⊙C內(nèi)部,
∴R=2OP=2
∵直線y=k(x+1)上存在到G2的距離跨度為2的點P,
∴2=2
∴(k2+1)m2+2(k2-1)m+k2=0①,
∵存在點P,
∴方程①有實數(shù)根,
∴△=4(k2-1)2-4×(k2+1)k2=-12k2+4≥0,
(3)如圖,作EC⊥OP于C,交⊙E于D、H.
由題意:⊙E是以3為半徑的圓,且圓心E在x軸上運動,若射線OP上存在點到⊙E的距離跨度為2,此時以E為圓心1為半徑的圓與射線OP相切,當(dāng)以E為圓心1為半徑的圓與射線OP有交點時,滿足條件,
∴CD=2,CH=4,CE=1,
∵射線OP的解析式為y=,
∴∠COE=30°,OE=2CE=2,
當(dāng)E′(-1,0)時,點O到⊙E的距離跨度為2,
觀察圖象可知,滿足條件的圓心E的橫坐標(biāo)xE的取值范圍:-1≤xE≤2.
故答案為:-1≤xE≤2.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,E是對角線BD上一點,且滿足BE=BC.連接CE并延長交AD于點F,連接AE,過B點作BG⊥AE于點G,延長BG交AD于點H.在下列結(jié)論中:
①AH=DF; ②∠AEF=45°; ③S四邊形EFHG=S△DEF+S△AGH,
其中正確的結(jié)論有_____________________.(填正確的序號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AD、BE分別是等邊△ABC中BC、AC上的高.M、N分別在AD、BE的延長線上,∠CBM=∠ACN.求證:AM=BN.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1在正方形ABCD的外側(cè)作兩個等邊三角形ADE和DCF,連接AF,BE.
(圖1) (圖2) (備用圖)
(1)請判斷:AF與BE的數(shù)量關(guān)系是_____________,位置關(guān)系______________;
(2)如圖2,若將條件“兩個等邊三角形ADE和DCF”變?yōu)椤皟蓚等腰三角形ADE和DCF,且EA=ED=FD=FC”,第(1)問中的結(jié)論是否仍然成立?請作出判斷并給予證明;
(3)若三角形ADE和DCF為一般三角形,且AE=DF,ED=FC,第(1)問中的結(jié)論都能成立嗎?請直接寫出你的判斷.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若八個數(shù)據(jù)x1, x2, x3, ……x8, 的平均數(shù)為8,方差為1,增加一個數(shù)據(jù)8后所得的九個數(shù)據(jù)x1, x2, x3, …x8;8的平均數(shù)________8,方差為S2 ________1.(填“>”、“=”、“<”)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知一次函數(shù)圖像過點P(0,6),且平行于直線y=-2x
(1)求該一次函數(shù)的解析式
(2)若點A(,a)、B(2,b)在該函數(shù)圖像上,試判斷a、b的大小關(guān)系,并說明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB、CD為兩個建筑物,建筑物AB的高度為60米,從建筑物AB的頂點A點測得建筑物CD的頂點C點的俯角∠EAC為30°,測得建筑物CD的底部D點的俯角∠EAD為45°.
(1)求兩建筑物底部之間水平距離BD的長度;
(2)求建筑物CD的高度(結(jié)果保留根號).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點A的坐標(biāo)為(m,m),點B的坐標(biāo)為(n,﹣n),拋物線經(jīng)過A、O、B三點,連接OA、OB、AB,線段AB交y軸于點C.已知實數(shù)m、n(m<n)分別是方程x2﹣2x﹣3=0的兩根.
(1)求拋物線的解析式;
(2)若點P為線段OB上的一個動點(不與點O、B重合),直線PC與拋物線交于D、E兩點(點D在y軸右側(cè)),連接OD、BD.
①當(dāng)△OPC為等腰三角形時,求點P的坐標(biāo);
②求△BOD 面積的最大值,并寫出此時點D的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com