【題目】作圖題:如圖,在平面直角坐標(biāo)系中,,,
(1)畫出的邊上的高CH;
(2)將平移到(點和點對應(yīng),點和點對應(yīng),點和點對應(yīng)),若點的坐標(biāo)為,請畫出平移后的;
(3)若,為平面內(nèi)一點,且滿足與全等,請直接寫出點的坐標(biāo).
【答案】(1)見詳解;(2)見詳解;(3)(3,4)或(3,-4)或(1,4)或(1,-4).
【解析】
(1)根據(jù)三角形高的定義畫出圖形即可;
(2)先算出每個點平移后對應(yīng)點的坐標(biāo),利用平移的性質(zhì)畫出圖形即可;
(3)根據(jù)三角形全等的定義和判斷,由DM=CH=2,即可找到N點的坐標(biāo)使得與全等;
解:(1)過點C作CP⊥AB,交BA的延長線于點P,則CP就是△ABC的AB邊上的高;
(2)點A(-4,1)平移到點D(1,0),平移前后橫坐標(biāo)加5,縱坐標(biāo)減1,
因此:點B、C平移前后坐標(biāo)也作相應(yīng)變化,
即:點B(-1,1)平移到點E(4,0),
點C(-5,3)平移到點F(0,2),
平移后的△DEF如上圖所示;
(3) 當(dāng),為平面內(nèi)一點,且滿足與全等時,此時DM的長度為2,剛好與CH的長度相等,又BH的長度等于4,根據(jù)三角形全等的性質(zhì)(對應(yīng)邊相等),
如下圖,可以找到4點N,
故N點的坐標(biāo)為:(3,4)或(3,-4)或(1,4)或(1,-4).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正三角形ABC中,D,E,F(xiàn)分別是BC,AC,AB上的點,DE⊥AC,EF⊥AB,F(xiàn)D⊥BC,則△DEF的面積與△ABC的面積之比等于 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,點E,F分別在AB,CD上,AF⊥CE,垂足為點O,∠1=∠B,
∠A+∠2=90°.求證:AB∥CD.
證明:如圖,
∵∠1=∠B(已知)
∴CE∥BF(同位角相等,兩直線平行)
______________
∴∠AFC+∠2=90°(等式性質(zhì))
∵∠A+∠2=90°(已知)
∴∠AFC=∠A(同角或等角的余角相等)
∴AB∥CD(內(nèi)錯角相等,兩直線平行)
請你仔細(xì)觀察下列序號所代表的內(nèi)容:
①∴∠AOE=90°(垂直的定義)
②∴∠AFB=90°(等量代換)
③∵AF⊥CE(已知)
④∵∠AFC+∠AFB+∠2=180°(平角的定義)
⑤∴∠AOE=∠AFB(兩直線平行,同位角相等)
橫線處應(yīng)填寫的過程,順序正確的是( 。
A.⑤③①②④B.③④①②⑤C.⑤④③①②D.⑤②④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AD是⊙O的切線,切點為A,AB是⊙O的弦.過點B作BC∥AD,交⊙O于點C,連接AC,過點C作CD∥AB,交AD于點D.連接AO并延長交BC于點M,交過點C的直線于點P,且∠BCP=∠ACD.
(1)判斷直線PC與⊙O的位置關(guān)系,并說明理由;
(2)若AB=9,BC=6.求PC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系內(nèi),正方形ABCD中的頂點B,D的坐標(biāo)分別是(0,0),(2,0),且A,C兩點關(guān)于x軸對稱,則C點對應(yīng)的坐標(biāo)是( )
A.(1,1)
B.(1,﹣1)
C.(1,﹣2)
D.(2,﹣2)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,AD∥BC,E是AB的中點,連接DE并延長交CB的延長線于點F,點G在邊BC上,且∠GDF=∠ADF.
(1)求證:△ADE≌△BFE;
(2)連接EG,判斷EG與DF的位置關(guān)系并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知正方形ABCD的邊長為10厘米,點E在邊AB上,且AE=4厘米,如果點P在線段BC上以2厘米/秒的速度由B點向C點運動,同時,點Q在線段CD上由C點向D點運動.設(shè)運動時間為t秒.
(1)若點Q的運動速度與點P的運動速度相等,經(jīng)過2秒后,△BPE與△CQP是否全等?請說明理由;
(2)若點Q的運動速度與點P的運動速度不相等,則當(dāng)t為何值時,能夠使△BPE與△CQP全等;此時點Q的運動速度為多少.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,∠BAC=90°,點D是BC上一點,將△ABD沿AD翻折后得到△AED,邊AE交射線BC于點F.(友情提醒:翻折前后的兩個三角形的對應(yīng)邊相等,對應(yīng)角相等.)
(1)如圖①,當(dāng)AE⊥BC時,求證:DE∥AC.
(2)若,∠BAD=x° .
①如圖②,當(dāng)DE⊥BC時,求x的值;
②是否存在這樣的x的值,使得△DEF中有兩個角相等.若存在,并求x的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將△ABC繞點C順時針旋轉(zhuǎn)m°得到△EDC,若點A、D、E在同一直線上,∠ACB=n°,則∠ADC的度數(shù)是( 。
A. (m﹣n)°B. (90+n-m)°C. (90-n+m)°D. (180﹣2n﹣m)°
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com