【題目】如圖是一次射擊訓練中甲、乙兩人的10次射擊成績的分布情況,則射擊成績的方差較小的是_____(填“甲”或“乙”).
【答案】甲
【解析】
從一次射擊訓練中甲、乙兩人的10次射擊成績的分布情況得出甲乙的射擊成績,再利用方差的公式計算.
由圖中知,甲的成績?yōu)?/span>7,8,8,9,8,9,9,8,7,7,
乙的成績?yōu)?/span>6,8,8,9,8,10,9,8,6,7,
=(7+8+8+9+8+9+9+8+7+7)÷10=8,
=(6+8+8+9+8+10+9+8+6+7)÷10=7.9,
甲的方差S甲2=[3×(7﹣8)2+4×(8﹣8)2+3×(9﹣8)2]÷10=0.6,
乙的方差S乙2=[2×(6﹣7.9)2+4×(8﹣7.9)2+2×(9﹣7.9)2+(10﹣7.9)2+(7﹣7.9)2]÷10=1.49,
則S2甲<S2乙,即射擊成績的方差較小的是甲.
故答案為:甲.
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,中, ,直線點是上的動點,過三點的圓交直線于點,連結(jié).
當點與點重合時如圖2所示,連,求證:四邊形是矩形.
如圖3,當與過三點的圓相切時,求的長.
作點關(guān)于直線的對稱點,試判斷能否落在直線上,若能請直接寫出的長,若不能說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖是拋物線y1=ax2+bx+c(a≠0)圖象的一部分,拋物線的頂點坐標A(1,3),與x軸的一個交點B(4,0),直線y2=mx+n(m≠0)與拋物線交于A,B兩點,下列結(jié)論:
①2a+b=0;②abc>0;③方程ax2+bx+c=3有兩個相等的實數(shù)根;④拋物線與x軸的另一個交點是(﹣1,0);⑤當1<x<4時,有y2<y1,
其中正確的是( )
A. ①②③ B. ①③④ C. ①③⑤ D. ②④⑤
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線a∥b,∠1=40°,∠2=80°,則∠3的度數(shù)為( 。
[Failed to download image : http://192.168.0.10:8086/QBM/2020/6/15/2485292109684736/2491850430775296/STEM/0502255e02c3498e9234cb6eaef26eb9.png]
A.120°B.130°C.140°D.110°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在邊長為6的菱形ABCD中,對角線AC,BD交點與點O,點P是△ADO的重心.
(1)當菱形ABCD是正方形時,則PA=________,PD=__________,PO=_________.
(2)線段PA,PD,PO中是否存在長度保持不變的線段,若存在,請求出該線段的長度,若不存在,請說明理由.
(3)求線段PD,DO滿足的等量關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小明準備給長米,寬米的長方形空地栽種花卉和草坪,圖中I、II、III三個區(qū)域分別栽種甲、乙、丙三種花卉,其余區(qū)域栽種草坪.四邊形和均為正方形,且各有兩邊與長方形邊重合;矩形(區(qū)域II)是這兩個正方形的重疊部分,如圖所示.
(1)若花卉均價為元,種植花卉的面積為,草坪均價為元,且花卉和草坪栽種總價不超過元,求的最大值.
(2)若矩形滿足.
①求,的長.
②若甲、乙、丙三種花卉單價分別為元,元,元,且邊的長不小于邊長的倍.求圖中I、II、III三個區(qū)域栽種花卉總價的最大值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一次函數(shù)與反比例函數(shù)的圖象交于A(m,6),B(3,n)兩點.
(1)求一次函數(shù)的解析式;
(2)求的面積;
(3)根據(jù)圖象直接寫出的x的取值范圍
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某科技公司接到一份新型高科技產(chǎn)品緊急訂單,要求在天內(nèi)(含天)完成任務,為提高生產(chǎn)效率,工廠加班加點,接到任務的第一天就生產(chǎn)了該種產(chǎn)品件,以后每天生產(chǎn)的產(chǎn)品都比前一天多件.由于機器損耗等原因,當日生產(chǎn)的產(chǎn)品數(shù)量達到件后,每多生產(chǎn)一件,當天生產(chǎn)的所有產(chǎn)品平均每件成本就增加元.
(1)設第天生產(chǎn)產(chǎn)品件,求出與之間的函數(shù)解析式,并寫出自變量的取值范圍.
(2)若該產(chǎn)品每件生產(chǎn)成本(日生產(chǎn)量不超過件時)為元,訂購價格為每件元,設第天的利潤為元,試求與之間的函數(shù)解析式,并求該公司哪一天獲得的利潤最大,最大利潤的是多少?
(3)該公司當天的利潤不低于元的是哪幾天?請直接寫出結(jié)果.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com