【題目】如圖1,, ,直線點(diǎn)上的動(dòng)點(diǎn),過(guò)三點(diǎn)的圓交直線于點(diǎn),連結(jié)

當(dāng)點(diǎn)與點(diǎn)重合時(shí)如圖2所示,連,求證:四邊形是矩形

如圖3,當(dāng)與過(guò)三點(diǎn)的圓相切時(shí),求的長(zhǎng)

作點(diǎn)關(guān)于直線的對(duì)稱點(diǎn),試判斷能否落在直線上,若能請(qǐng)直接寫出的長(zhǎng),若不能說(shuō)明理由

【答案】(1)證明過(guò)程見解析;(2);3)能,;

【解析】

1)利用圓的內(nèi)接四邊形對(duì)角互補(bǔ)得,再用已知,可證出,即證出四邊形是矩形;

(2)連結(jié),證明,根據(jù)相似的性質(zhì)得,可求出的長(zhǎng),進(jìn)而可求出的長(zhǎng);

(3)若上,則,由于,,可知是直徑,所以應(yīng)在以為直徑的圓上,重合, 可設(shè),則,解這個(gè)方程即可求得的長(zhǎng).

共圓,

四邊形是矩形

連結(jié),

,

,

上,

,

,

是直徑應(yīng)在以為直徑的圓上,

重合,

設(shè),

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在邊長(zhǎng)為1的小正方形組成的網(wǎng)格中,給出了格點(diǎn)四邊形ABCD(頂點(diǎn)為網(wǎng)格線的交點(diǎn)).

1)畫出四邊形ABCD關(guān)于x軸成軸對(duì)稱的四邊形A1B1C1D1;

2)以O為位似中心,在第三象限畫出四邊形ABCD的位似四邊形A2B2C2D2,且位似比為1

3)在第一象限內(nèi)找出格點(diǎn)P,使∠DCP=CDP,并寫出點(diǎn)P的坐標(biāo)(寫出一個(gè)即可).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在△ABC中,點(diǎn)D在邊BC上,∠ABC:∠ACB:∠ADB=1:2:3,⊙O是△ABD的外接圓.

(1)求證:AC是⊙O的切線;

(2)當(dāng)BD是⊙O的直徑時(shí)(如圖2),求∠CAD的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一組正方形按如圖所示放置,其中頂點(diǎn) B1 y 軸上,頂點(diǎn) C1,E1E2,C2,E3E4,C3 x 軸上.已知正方形 A1B1C1D1 的邊長(zhǎng)為 1,∠B1C1O60°B1C1B2C2B3C3,則正方形 A2020B2020C2020D2020 的邊長(zhǎng)是______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線軸于兩點(diǎn),交軸于點(diǎn)直線經(jīng)過(guò)點(diǎn)

1)求拋物線的解析式;

2)點(diǎn)是直線下方的拋物線上一動(dòng)點(diǎn),過(guò)點(diǎn)軸于點(diǎn)交直線于點(diǎn)設(shè)點(diǎn)的橫坐標(biāo)為的值;

3是第一象限對(duì)稱軸右側(cè)拋物線上的一點(diǎn),連接拋物線的對(duì)稱軸上是否存在點(diǎn).使得相似,且為直角,若存在,請(qǐng)直接寫出點(diǎn)的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在邊長(zhǎng)為1的小正方形組成的網(wǎng)格中,給出了格點(diǎn)△ABC(頂點(diǎn)為網(wǎng)格線的交點(diǎn))

(1)將△ABC先向下平移3個(gè)單位長(zhǎng)度,再向右平移4個(gè)單位長(zhǎng)度后得到△A1B1C1.畫出平移后的圖形;

(2)將△ABC繞點(diǎn)A1順時(shí)針旋轉(zhuǎn)90°后得到△A2B2C2.畫出旋轉(zhuǎn)后的圖形;

(3)借助網(wǎng)格,利用無(wú)刻度直尺畫出△A1B1C1的中線A1D1(畫圖中要體現(xiàn)找關(guān)鍵點(diǎn)的方法)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為發(fā)展學(xué)生的核心素養(yǎng),培養(yǎng)學(xué)生的綜合能力,某學(xué)校計(jì)劃開設(shè)四門選修課程:樂(lè)器、舞蹈、繪畫、書法,學(xué)校采取隨機(jī)抽樣的方法進(jìn)行問(wèn)卷調(diào)查(每個(gè)被調(diào)查的學(xué)生必須選擇而且只能選擇其中一門).對(duì)調(diào)查的結(jié)果進(jìn)行整理,繪制成如下兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)結(jié)合圖中所給信息解答下列問(wèn)題:

1)本次共調(diào)查了多少名學(xué)生?

2)請(qǐng)將條形統(tǒng)計(jì)圖補(bǔ)充完整;

3)在被調(diào)查的學(xué)生中,選修書法的有2名男同學(xué),其余為女同學(xué),現(xiàn)要從中隨機(jī)抽取2名同學(xué)代表學(xué)校參加某社區(qū)組織的書法活動(dòng),請(qǐng)你用列表或畫樹狀圖的方法,求所抽取的2名同學(xué)恰好是1名男同學(xué)和1名女同學(xué)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】先閱讀材料,再解答問(wèn)題:

已知點(diǎn)和直線,則點(diǎn)到直線的距離可用公式計(jì)算.例如:求點(diǎn)到直線的距離.

解:由直線可知:

所以點(diǎn)到直線的距離為

求:(1)已知直線平行,求這兩條平行線之間的距離;

2)已知直線分別交軸于兩點(diǎn),是以為圓心,為半徑的圓,上的動(dòng)點(diǎn),試求面積的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是一次射擊訓(xùn)練中甲、乙兩人的10次射擊成績(jī)的分布情況,則射擊成績(jī)的方差較小的是_____(填“甲”或“乙”)

查看答案和解析>>

同步練習(xí)冊(cè)答案