【題目】先閱讀材料,再解答問題:
已知點和直線,則點到直線的距離可用公式計算.例如:求點到直線的距離.
解:由直線可知:.
所以點到直線的距離為.
求:(1)已知直線與平行,求這兩條平行線之間的距離;
(2)已知直線分別交軸于兩點,是以為圓心,為半徑的圓,為上的動點,試求面積的最大值.
【答案】(1);(2)18
【解析】
(1)在直線上任取一點,由直線與平行,則兩直線間的距離即為點P到的距離;再根據(jù)題干所給距離公式解答即可;
(2)分別令x=0、y=0求得對應(yīng)的y和x,進而確定點A、B的坐標(biāo)和AB的長度;設(shè)圓心到直線即的距離為,的半經(jīng)為,然后根據(jù)題干所給距離公式求得半徑R,然后再根據(jù)直線與圓的位置關(guān)系列出不等式,求得點到直線的距離的最大值,最后運用圓的面積公式求解即可.
解:(1)在直線上任取一點,
直線與平行,
這兩條平行線之間的距離等于點到直線的距離.
直線可變形為,其中.
點到直線的距離.
這兩條平行線之間的距離等于 ;
(2)令得;令得
,.
設(shè)圓心到直線即的距離為,的半經(jīng)為
,即:
又∵上任意點到直線的距離h≤,
上任意點到直線的距離的最大值hmax=
所以的面積的最大值為:
.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,,,分別是,軸上的點,且,,為線段的中點,,為軸正半軸上的任意一點,連結(jié),以為邊按順時針方向作正方形.
(1)填空:點的坐標(biāo)為______;
(2)記正方形的面積為,①求關(guān)于的函數(shù)關(guān)系式;②當(dāng)時,求的值.
(3)是否存在滿足條件的的值,使正方形的頂點或落在的邊上?若存在,求出所有滿足條件的的值;若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,中, ,直線點是上的動點,過三點的圓交直線于點,連結(jié).
當(dāng)點與點重合時如圖2所示,連,求證:四邊形是矩形.
如圖3,當(dāng)與過三點的圓相切時,求的長.
作點關(guān)于直線的對稱點,試判斷能否落在直線上,若能請直接寫出的長,若不能說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)()的圖象如圖所示,對稱軸為.有下列4個結(jié)論:①;②;③;④當(dāng)時,隨的增大而增大.其中,正確的結(jié)論有( )
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線(為常數(shù),且)與軸從左至右依次交于A,B兩點,與軸交于點C,經(jīng)過點B的直線與拋物線的另一交點為D,點D的橫坐標(biāo)為-4.
(1)求直線的函數(shù)解析式;
(2)求拋物線的函數(shù)解析式;
(3)分別求出tan∠ABC和tan∠BAC的值;
(4)在第一象限的拋物線上是否存在點P,使得以A,B,P為頂點的三角形與△ABC相似?若存在,請求出點P的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下面內(nèi)容,并解決問題:
《名畫》中的數(shù)學(xué)
前蘇聯(lián)著名科學(xué)家別萊利曼在他所著的《趣味代數(shù)學(xué)》中介紹了波格達諾夫·別列斯基的《名畫》,畫上那位老師拉金斯基是一位自然科學(xué)教授,放棄了大學(xué)教席(教師職務(wù))來到農(nóng)村學(xué)校當(dāng)一名普通老師.畫中,黑板上寫著一道式子,如圖所示:
從這道算式計算可以得出答案等于2,如果仔細(xì)一研究,10,11,12,13,14這幾個數(shù)具有一種有趣的特性: ,而且.
請解答以下問題:
(1)還有沒有其他像這樣五個連續(xù)的整數(shù),前三個數(shù)的平方和正好等于后兩個數(shù)的平方和呢?如果有,請求出另外的五個連續(xù)的整數(shù);
(2)若七個連續(xù)整數(shù)前四個數(shù)的平方和等于后三個數(shù)的平方和,請直接寫出符合條件的連續(xù)整數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是拋物線y1=ax2+bx+c(a≠0)圖象的一部分,拋物線的頂點坐標(biāo)A(1,3),與x軸的一個交點B(4,0),直線y2=mx+n(m≠0)與拋物線交于A,B兩點,下列結(jié)論:
①2a+b=0;②abc>0;③方程ax2+bx+c=3有兩個相等的實數(shù)根;④拋物線與x軸的另一個交點是(﹣1,0);⑤當(dāng)1<x<4時,有y2<y1,
其中正確的是( )
A. ①②③ B. ①③④ C. ①③⑤ D. ②④⑤
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線a∥b,∠1=40°,∠2=80°,則∠3的度數(shù)為( )
[Failed to download image : http://192.168.0.10:8086/QBM/2020/6/15/2485292109684736/2491850430775296/STEM/0502255e02c3498e9234cb6eaef26eb9.png]
A.120°B.130°C.140°D.110°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某科技公司接到一份新型高科技產(chǎn)品緊急訂單,要求在天內(nèi)(含天)完成任務(wù),為提高生產(chǎn)效率,工廠加班加點,接到任務(wù)的第一天就生產(chǎn)了該種產(chǎn)品件,以后每天生產(chǎn)的產(chǎn)品都比前一天多件.由于機器損耗等原因,當(dāng)日生產(chǎn)的產(chǎn)品數(shù)量達到件后,每多生產(chǎn)一件,當(dāng)天生產(chǎn)的所有產(chǎn)品平均每件成本就增加元.
(1)設(shè)第天生產(chǎn)產(chǎn)品件,求出與之間的函數(shù)解析式,并寫出自變量的取值范圍.
(2)若該產(chǎn)品每件生產(chǎn)成本(日生產(chǎn)量不超過件時)為元,訂購價格為每件元,設(shè)第天的利潤為元,試求與之間的函數(shù)解析式,并求該公司哪一天獲得的利潤最大,最大利潤的是多少?
(3)該公司當(dāng)天的利潤不低于元的是哪幾天?請直接寫出結(jié)果.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com