【題目】已知二次函數(shù))的圖象如圖所示,對稱軸為.有下列4個結(jié)論:①;②;③;④當(dāng)時,的增大而增大.其中,正確的結(jié)論有(

A.1B.2C.3D.4

【答案】C

【解析】

由二次函數(shù)的性質(zhì)和二次函數(shù)對稱軸,確定a,b,c的符號,即可判定①;由圖像可知當(dāng)x=-1時,函數(shù)值小于0,即可以將x=-1代入函數(shù)解析式,化簡即可判斷②,又由對稱軸為x=-,即可求得a=b0,將x=1代入函數(shù)解析式,得出a、b、c的關(guān)系,將ab換下來,求出bc的關(guān)系,再進(jìn)行變形判斷即可解決③,根據(jù)二次函數(shù)的性質(zhì),結(jié)合圖像即可判斷④.

解:由二次函數(shù)圖像和性質(zhì)可知,a0,c0,

a=b0,

,

故①正確;

由圖像可知當(dāng)x=-1時,函數(shù)值小于0,

a-b+c0,

ba+c

故②錯誤;

由圖像可知當(dāng)x=1時,函數(shù)值<0,

a+b+c0,

a=b,

2b+c0,

2b-c

8b-4c,

b0

3b8b

3b-4c.

故③正確;

根據(jù)函數(shù)圖像可知,函數(shù)在對稱軸的右側(cè)yx的增大而增大,

∵二次函數(shù)的對稱軸為x=-

∴當(dāng)時,的增大而增大.

故④正確.

故本題答案為:C.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,的內(nèi)接三角形,的直徑,平分,交于點(diǎn),交于點(diǎn),連接

求證:

①當(dāng)四邊形為平行四邊形時,的長為 ;

②若,則的長為 (結(jié)果保留)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一組正方形按如圖所示放置,其中頂點(diǎn) B1 y 軸上,頂點(diǎn) C1,E1,E2C2,E3E4,C3 x 軸上.已知正方形 A1B1C1D1 的邊長為 1,∠B1C1O60°B1C1B2C2B3C3,則正方形 A2020B2020C2020D2020 的邊長是______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在邊長為1的小正方形組成的網(wǎng)格中,給出了格點(diǎn)△ABC(頂點(diǎn)為網(wǎng)格線的交點(diǎn))

(1)將△ABC先向下平移3個單位長度,再向右平移4個單位長度后得到△A1B1C1.畫出平移后的圖形;

(2)將△ABC繞點(diǎn)A1順時針旋轉(zhuǎn)90°后得到△A2B2C2.畫出旋轉(zhuǎn)后的圖形;

(3)借助網(wǎng)格,利用無刻度直尺畫出△A1B1C1的中線A1D1(畫圖中要體現(xiàn)找關(guān)鍵點(diǎn)的方法)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為發(fā)展學(xué)生的核心素養(yǎng),培養(yǎng)學(xué)生的綜合能力,某學(xué)校計劃開設(shè)四門選修課程:樂器、舞蹈、繪畫、書法,學(xué)校采取隨機(jī)抽樣的方法進(jìn)行問卷調(diào)查(每個被調(diào)查的學(xué)生必須選擇而且只能選擇其中一門).對調(diào)查的結(jié)果進(jìn)行整理,繪制成如下兩幅不完整的統(tǒng)計圖,請結(jié)合圖中所給信息解答下列問題:

1)本次共調(diào)查了多少名學(xué)生?

2)請將條形統(tǒng)計圖補(bǔ)充完整;

3)在被調(diào)查的學(xué)生中,選修書法的有2名男同學(xué),其余為女同學(xué),現(xiàn)要從中隨機(jī)抽取2名同學(xué)代表學(xué)校參加某社區(qū)組織的書法活動,請你用列表或畫樹狀圖的方法,求所抽取的2名同學(xué)恰好是1名男同學(xué)和1名女同學(xué)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在美化校園的活動中,數(shù)學(xué)興趣小組用16m長的籬笆,一邊靠墻圍成一個矩形花園ABCD,墻長為6m,設(shè)ABm

1)若花園的面積為14,求的值;

2)花園的面積能否為40?為什么?

3)若要求花園的面積大于24,求的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】先閱讀材料,再解答問題:

已知點(diǎn)和直線,則點(diǎn)到直線的距離可用公式計算.例如:求點(diǎn)到直線的距離.

解:由直線可知:

所以點(diǎn)到直線的距離為

求:(1)已知直線平行,求這兩條平行線之間的距離;

2)已知直線分別交軸于兩點(diǎn),是以為圓心,為半徑的圓,上的動點(diǎn),試求面積的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】足球運(yùn)球是中考體育必考項目之一.我市某學(xué)校為了解今年九年級學(xué)生足球運(yùn)球的掌握情況,隨機(jī)抽取部分九年級學(xué)生足球運(yùn)球的測試成績作為一個樣本,按A、BC、D四個等級進(jìn)行統(tǒng)計,制成了如圖不完整的統(tǒng)計圖.

根據(jù)所給信息,解答以下問題:

1)本次抽樣調(diào)查抽取了   名學(xué)生的成績;在扇形統(tǒng)計圖中,D對應(yīng)的扇形的圓心角是   度;

2)補(bǔ)全條形統(tǒng)計圖;

3)所抽取學(xué)生的足球運(yùn)球測試成績的中位數(shù)會落在   等級;

4)該校九年級有300名學(xué)生,請估計足球運(yùn)球測試成績達(dá)到A級的學(xué)生有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2022年在北京將舉辦第24屆冬季奧運(yùn)會,很多學(xué)校都開展了冰雪項目學(xué)習(xí).如圖,滑雪軌道由ABBC兩部分組成,AB、BC的長度都為200米,一位同學(xué)乘滑雪板沿此軌道由A點(diǎn)滑到了C點(diǎn),若AB與水平面的夾角α20°BC與水平面的夾角β45°,則他下降的高度為___________米(精確到1米,,sin20o=0.3420tan20o=0.3640,cos20o=0.9400).

查看答案和解析>>

同步練習(xí)冊答案