【題目】如圖,拋物線軸于兩點(diǎn),交軸于點(diǎn)直線經(jīng)過點(diǎn)

1)求拋物線的解析式;

2)點(diǎn)是直線下方的拋物線上一動點(diǎn),過點(diǎn)軸于點(diǎn)交直線于點(diǎn)設(shè)點(diǎn)的橫坐標(biāo)為的值;

3是第一象限對稱軸右側(cè)拋物線上的一點(diǎn),連接拋物線的對稱軸上是否存在點(diǎn).使得相似,且為直角,若存在,請直接寫出點(diǎn)的坐標(biāo),若不存在,請說明理由.

【答案】1;(2 ;(3)存在,點(diǎn)坐標(biāo)為

【解析】

1)先求出點(diǎn)A、B坐標(biāo),用待定系數(shù)法即求出拋物線解析式;

2)根據(jù)拋物線解析式與直線解析式表示出點(diǎn)P、F的坐標(biāo),然后表示出PE、PF,再列出絕對值方程,然后求解即可;

3)先求出點(diǎn)C的坐標(biāo),也就求出OC的長,再設(shè)對稱軸與軸交于點(diǎn)點(diǎn)作交對稱軸于點(diǎn).根據(jù)相似三角形的性質(zhì)得到KMMQ的長,進(jìn)而表示出點(diǎn)N的坐標(biāo),最后將點(diǎn)N的坐標(biāo)代入函數(shù)解析式求解即可.

經(jīng)過點(diǎn)分別在軸與軸上,

拋物線經(jīng)過點(diǎn)

,解得

拋物線的解析式為

點(diǎn)的橫坐標(biāo)為

由題意可知,點(diǎn)的坐標(biāo)為點(diǎn)的坐標(biāo)為

當(dāng)點(diǎn)軸上方時,

解得(與點(diǎn)重合,舍去)

當(dāng)點(diǎn)軸下方時,

解得(與點(diǎn)重合,舍去)

綜上所述,的值為

存在,點(diǎn)坐標(biāo)為

如圖,設(shè)對稱軸與軸交于點(diǎn)點(diǎn)作交對稱軸于點(diǎn)

軸交于兩點(diǎn),

拋物線的對稱軸為直線

當(dāng)時,

由一線三垂直模型得出,

設(shè)

點(diǎn)在拋物線上,

解得()

點(diǎn)的坐標(biāo)為

當(dāng)時,

同理

,

設(shè)

點(diǎn)在拋物線上,

解得(),

點(diǎn)的坐標(biāo)為

綜上所述,存在點(diǎn)點(diǎn)的坐標(biāo)為,

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)不透明的袋子A中裝有紅球1個、白球1個,不透明的袋子B中裝有紅球1個、白球2個,這些球除顏色外無其他差別.分別從兩個袋子中隨機(jī)摸出一個球,求摸出的兩個球顏色不同的概率;

2)甲、乙兩人解同一道數(shù)學(xué)題,甲正確的概率為,乙正確的概率為,則甲乙恰有一人正確的概率是   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,拋物線軸于A、B兩點(diǎn),交軸于點(diǎn)C,直線經(jīng)過點(diǎn)A、C

1)求拋物線的解析式;

2)點(diǎn)P為直線AC上一點(diǎn),在平面內(nèi)是否存在點(diǎn)Q,使得以A、BP、Q為頂點(diǎn)的四邊形為正方形?若存在,求出點(diǎn)Q的坐標(biāo),若不存在,請說明理由;

3)在軸上存在點(diǎn)M,且,請直接寫出點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某超市銷售一種商品,成本每千克40元,規(guī)定每千克售價不低于成本,且不高于80元,經(jīng)市場調(diào)查,每天的銷售量y(千克)與每千克售價x(元)滿足一次函數(shù)關(guān)系,部分?jǐn)?shù)據(jù)如下表:

售價x(元/千克)

50

60

70

銷售量y(千克)

100

80

60

1)求yx之間的函數(shù)表達(dá)式;

2)設(shè)商品每天的總利潤為W(元),則當(dāng)售價x定為多少元時,廠商每天能獲得最大利潤?最大利潤是多少?

3)如果超市要獲得每天不低于1350元的利潤,且符合超市自己的規(guī)定,那么該商品每千克售價的取值范圍是多少?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】校園安全越來越受到人們的關(guān)注,我市某中學(xué)對部分學(xué)生就校園安全知識的了解程度,采用隨機(jī)抽樣調(diào)查的方式,并根據(jù)收集到的信息進(jìn)行統(tǒng)計(jì),繪制了下面兩幅尚不完整的統(tǒng)計(jì)圖.根據(jù)圖中信息回答下列問題:

1)接受問卷調(diào)查的學(xué)生共有______人,條形統(tǒng)計(jì)圖中m的值為______

2)扇形統(tǒng)計(jì)圖中了解很少部分所對應(yīng)扇形的圓心角的度數(shù)為______;

3)若該中學(xué)共有學(xué)生1800人,根據(jù)上述調(diào)查結(jié)果,可以估計(jì)出該學(xué)校學(xué)生中對校園安全知識達(dá)到非常了解基本了解程度的總?cè)藬?shù)為______人;

4)若從對校園安全知識達(dá)到非常了解程度的2名男生和2名女生中隨機(jī)抽取2人參加校園安全知識競賽,請用列表或畫樹狀圖的方法,求恰好抽到1名男生和1名女生的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小帶和小路兩個人開車從A城出發(fā)勻速行駛至B城.在整個行駛過程中,小帶和小路兩人車離開A城的距離y(km)與行駛的時間t(h)之間的函數(shù)關(guān)系如圖所示.有下列結(jié)論;①A,B兩城相距300 km;②小路的車比小帶的車晚出發(fā)1 h,卻早到1 h;③小路的車出發(fā)后2.5 h追上小帶的車;④當(dāng)小帶和小路的車相距50 km時,tt.其中正確的結(jié)論有(  )

A. ①②③④B. ①②④

C. ①②D. ②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小松想利用所學(xué)數(shù)學(xué)知識測量學(xué)校旗桿高度,如圖,旗桿AB的頂端垂下一繩子,將繩子拉直釘在地上,末端恰好在C處且與地面成60°角,小松拿起繩子末端,后退至E處,并拉直繩子,此時繩子末端D距離地面2m且繩子與水平方向成45°角.求旗桿AB的高度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,的直徑,點(diǎn)上一點(diǎn),的平分線于點(diǎn),過點(diǎn)的延長線于點(diǎn)

1)求證:的切線;

2)過點(diǎn)于點(diǎn),連接.若,求的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,把一張長方形紙片,沿對角線折疊,點(diǎn)的對應(yīng)點(diǎn)為相交于點(diǎn),則下列結(jié)論中不一定正確的是(

A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案