【題目】如圖,已知⊙O是以BC為直徑的△ABC的外接圓,OP∥AC,且與BC的垂線交于點(diǎn)P,OP交AB于點(diǎn)D,BC、PA的延長(zhǎng)線交于點(diǎn)E.
(1)求證:PA是⊙O的切線;(2)若sinE=,PA=6,求AC的長(zhǎng).
【答案】(1)見(jiàn)解析;(2).
【解析】
(1)先利用平行線的性質(zhì)得到∠ACO=∠POB,∠CAO=∠POA,加上∠ACO=∠CAO,則∠POA=∠POB,于是可根據(jù)“SAS”判斷△PAO≌△PBO,則∠PAO=∠PBO=90°,然后根據(jù)切線的判定定理即可得到PA是⊙O的切線;
(2)先由△PAO≌△PBO得PB=PA=6,在Rt△PBE中,利用正弦的定義可計(jì)算PE=10,則AE=PE-PA=4,再在Rt△AOE中,由sinE=,可設(shè)OA=3t,則OE=5t,由勾股定理得到AE=4t,則4t=4,解得t=1,所以OA=3;接著在Rt△PBO中利用勾股定理計(jì)算出OP=3,然后證明△EAC∽△EPO,再利用相似比可計(jì)算出AC.
(1)證明:連接OA,如圖,
∵AC∥OP,
∴∠ACO=∠POB,∠CAO=∠POA,
又∵OA=OC,
∴∠ACO=∠CAO,
∴∠POA=∠POB,
在△PAO和△PBO中,
,
∴△PAO≌△PBO(SAS),
∴∠PAO=∠PBO,
又∵PB⊥BC,
∴∠PBO=90°,
∴∠PAO=90°,
∴OA⊥PE,
∴PA是⊙O的切線;
(2)解:∵△PAO≌△PBO,
∴PB=PA=6,
在Rt△PBE中,∵sinE=
∴,解得PE=10,
∴AE=PE﹣PA=4,
在Rt△AOE中,sinE=,
設(shè)OA=3t,則OE=5t,
∴AE==4t,
∴4t=4,解得t=1,
∴OA=3,
在Rt△PBO中,∵OB=3,PB=6,
∴OP=,
∵AC∥OP,
∴△EAC∽△EPO,
∴,即,
∴AC=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線與軸交于、兩點(diǎn),是以點(diǎn)(0,3)為圓心,2為半徑的圓上的動(dòng)點(diǎn),是線段的中點(diǎn),連結(jié).則線段的最大值是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,工人師傅用一塊長(zhǎng)為10分米,寬為6分米的矩形鐵皮制作一個(gè)無(wú)蓋的長(zhǎng)方體容器,需要將四角各裁掉一個(gè)正方形;(厚度不計(jì))
(1)當(dāng)長(zhǎng)方體底面面積為12平方分米時(shí),裁掉的正方形邊長(zhǎng)為______分米;
(2)若要求制作的長(zhǎng)方體的底面長(zhǎng)不大于底面寬的5倍,且將容器的外表面進(jìn)行防銹處理,其側(cè)面處理費(fèi)用為0.5元/平方分米,底面處理費(fèi)用為2元/平方分米;求:裁掉的正方形邊長(zhǎng)為多大時(shí),防銹處理總費(fèi)用最低,最低為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了豐富同學(xué)的課余生活,某學(xué)校將舉行“親近大自然”戶外活動(dòng),現(xiàn)隨機(jī)抽取了部分學(xué)生進(jìn)行主題為“你最想去的景點(diǎn)是________”的問(wèn)卷調(diào)查,要求學(xué)生只能從“A(綠博園),B(人民公園),C(濕地公園),D(森林公園)”四個(gè)景點(diǎn)中選擇一項(xiàng),根據(jù)調(diào)查結(jié)果,繪制了如下兩幅不完整的統(tǒng)計(jì)圖.
回答下列問(wèn)題:
(1)本次共調(diào)查了多少名學(xué)生?
(2)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)若該學(xué)校共有3 600名學(xué)生,試估計(jì)該校去濕地公園的學(xué)生人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知AB=AD,那么添加下列一個(gè)條件后,仍無(wú)法判定△ABC≌△ADC的是( 。
A. CB=CD B. ∠BAC=∠DAC C. ∠BCA=∠DCA D. ∠B=∠D=90°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某大型超市為了緩解停車難的問(wèn)題,建筑設(shè)計(jì)師提供了樓頂停車場(chǎng)的設(shè)計(jì)示意圖(如圖AC與ME平行).按規(guī)定,停車場(chǎng)坡道口上坡要張貼限高標(biāo)志,以便告知車輛能否安全駛?cè)耄?qǐng)根據(jù)下圖求出汽車通過(guò)坡道口的限高DF的長(zhǎng).(結(jié)果精確到0.1m)
(參考數(shù)據(jù): sin28°≈0.47,cos28°≈0.88, tan28°≈0.53)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,若要在寬AD為20米的城南大道兩邊安裝路燈,路燈的燈臂BC長(zhǎng)2米,且與燈柱AB成120°角,路燈采用圓錐形燈罩,燈罩的軸線CO與燈臂BC垂直,當(dāng)燈罩的軸線CO通過(guò)公路路面的中心線時(shí)照明效果最好,此時(shí),路燈的燈柱AB高應(yīng)該設(shè)計(jì)為多少米(結(jié)果保留根號(hào))?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在中,,,于點(diǎn).
(1)如圖1,點(diǎn),分別在,上,且,當(dāng),時(shí),求線段的長(zhǎng);
(2)如圖2,點(diǎn),分別在,上,且,求證:;
(3)如圖3,點(diǎn)在的延長(zhǎng)線上,點(diǎn)在上,且,求證:.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,△ABC的位置如圖所示(每個(gè)小方格都是邊長(zhǎng)為1個(gè)單位長(zhǎng)度的正方形).
(1)將△ABC沿軸方向向左平移6個(gè)單位,畫(huà)出平移后得到的△A1B1C1;
(2)將△ABC繞著點(diǎn)O順時(shí)針旋轉(zhuǎn)90°,畫(huà)出旋轉(zhuǎn)后得到的△AB2C2,并直接寫(xiě)出點(diǎn)B2 、C2的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com