【題目】如圖,點E正方形ABCD外一點,點F是線段AE上一點,△EBF是等腰直角三角形,其中∠EBF=90°,連接CE、CF.
(1)求證:△ABF≌△CBE;
(2)判斷△CEF的形狀,并說明理由.
【答案】
(1)證明:∵四邊形ABCD是正方形,
∴AB=CB,∠ABC=90°,
∵△EBF是等腰直角三角形,其中∠EBF=90°,
∴BE=BF,
∴∠ABC﹣∠CBF=∠EBF﹣∠CBF,
∴∠ABF=∠CBE.
在△ABF和△CBE中,有 ,
∴△ABF≌△CBE(SAS).
(2)解:△CEF是直角三角形.理由如下:
∵△EBF是等腰直角三角形,
∴∠BFE=∠FEB=45°,
∴∠AFB=180°﹣∠BFE=135°,
又∵△ABF≌△CBE,
∴∠CEB=∠AFB=135°,
∴∠CEF=∠CEB﹣∠FEB=135°﹣45°=90°,
∴△CEF是直角三角形.
【解析】(1)由四邊形ABCD是正方形可得出AB=CB,∠ABC=90°,再由△EBF是等腰直角三角形可得出BE=BF,通過角的計算可得出∠ABF=∠CBE,利用全等三角形的判定定理SAS即可證出△ABF≌△CBE;(2)根據(jù)△EBF是等腰直角三角形可得出∠BFE=∠FEB,通過角的計算可得出∠AFB=135°,再根據(jù)全等三角形的性質(zhì)可得出∠CEB=∠AFB=135°,通過角的計算即可得出∠CEF=90°,從而得出△CEF是直角三角形.
科目:初中數(shù)學 來源: 題型:
【題目】為弘揚中華傳統(tǒng)文化,某校組織八年級1000名學生參加漢字聽寫大賽.為了解學生整體聽寫能力,從中抽取部分學生的成績(得分取正整數(shù),滿分為100分)進行統(tǒng)計分析,請根據(jù)尚未完成的下列圖表,解答下列問題:
組別 | 分數(shù)段 | 頻數(shù) | 頻率 |
一 | 50.5~60.5 | 16 | 0.08 |
二 | 60.5~70.5 | 30 | 0.15 |
三 | 70.5~80.5 | m | 0.25 |
四 | 80.5~90.5 | 80 | n |
五 | 90.5~100.5 | 24 | 0.12 |
(1)寫出表中:m,n,此樣本中成績的中位數(shù)落在第幾組內(nèi);
(2)補全頻數(shù)直方圖;
(3)若成績超過80分為優(yōu)秀,該校八年級學生中漢字聽寫能力優(yōu)秀的約有多少人?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀下列材料:
小明遇到一個問題:在中,,,三邊的長分別為、、,求的面積.
小明是這樣解決問題的:如圖①所示,先畫一個正方形網(wǎng)格(每個小正方形的邊長為),再在網(wǎng)格中畫出格點(即三個頂點都在小正方形的頂點處),從而借助網(wǎng)格就能計算出的面積.他把這種解決問題的方法稱為構(gòu)圖法.
參考小明解決問題的方法,完成下列問題:
()圖是一個的正方形網(wǎng)格(每個小正方形的邊長為) .
①利用構(gòu)圖法在答卷的圖中畫出三邊長分別為、、的格點.
②計算①中的面積為__________.(直接寫出答案)
()如圖,已知,以,為邊向外作正方形,,連接.
①判斷與面積之間的關(guān)系,并說明理由.
②若,,,直接寫出六邊形的面積為__________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】將兩個直角三角尺的頂點O疊放在一起
(1)如圖(1)若∠BOD=35°,則∠AOC=___;若∠AOC=135°,則∠BOD=___;
(2)如圖(2)若∠AOC=140°,則∠BOD=___;
(3)猜想∠AOC與∠BOD的大小關(guān)系,并結(jié)合圖(1)說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商場將每件進價為80元的某種商品原來按每件100元出售,一天可售出100件.后來經(jīng)過市場調(diào)查,發(fā)現(xiàn)這種商品單價每降低1元,其銷量可增加10件.
(1)求商場經(jīng)營該商品原來一天可獲利潤多少元?
(2)設后來該商品每件降價x元,商場一天可獲利潤y元.
①若商場經(jīng)營該商品一天要獲利潤2160元,則每件商品應降價多少元?
②求出y與x之間的函數(shù)關(guān)系式,并直接寫出當x取何值時,商場獲利潤不少于2160元.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:等腰三角形OAB在直角坐標系中的位置如下圖,點A的坐標為( ,3),點B的坐標為(﹣6,0).
(1)若△OAB關(guān)于y軸的軸對稱圖形是△OA'B',請直接寫出A、B的對稱點A'、B'的坐標;
(2)若將△OAB沿x軸向右平移a個單位,此時點A恰好落在反比例函數(shù) 的圖象上,求a的值;
(3)若△OAB繞點O按逆時針方向旋轉(zhuǎn)30°,此時點B恰好落在反比例函數(shù) 的圖象上,求k的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,某沿海開放城市A接到臺風警報,在該市正南方向100km的B處有一臺風中心,沿BC方向以20km/h的速度向D移動,已知城市A到BC的距離AD=60km,那么臺風中心經(jīng)過多長時間從B點移到D點?如果在距臺風中心30km的圓形區(qū)域內(nèi)都將有受到臺風的破壞的危險,正在D點休閑的游人在接到臺風警報后的幾小時內(nèi)撤離才可脫離危險?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列變形中:
①由方程=2去分母,得x﹣12=10;
②由方程x=兩邊同除以,得x=1;
③由方程6x﹣4=x+4移項,得7x=0;
④由方程2﹣兩邊同乘以6,得12﹣x﹣5=3(x+3).
錯誤變形的個數(shù)是( 。﹤.
A. 4 B. 3 C. 2 D. 1
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線AB,CD相交于點O,OM⊥AB.
(1)∠AOC的鄰補角為 (寫出一個即可);
(2)若∠1=∠2,判斷ON與CD的位置關(guān)系,并說明理由;
(3)若∠1=∠BOC,求∠MOD的度數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com