【題目】如圖,點E正方形ABCD外一點,點F是線段AE上一點,△EBF是等腰直角三角形,其中∠EBF=90°,連接CE、CF.
(1)求證:△ABF≌△CBE;
(2)判斷△CEF的形狀,并說明理由.

【答案】
(1)證明:∵四邊形ABCD是正方形,

∴AB=CB,∠ABC=90°,

∵△EBF是等腰直角三角形,其中∠EBF=90°,

∴BE=BF,

∴∠ABC﹣∠CBF=∠EBF﹣∠CBF,

∴∠ABF=∠CBE.

在△ABF和△CBE中,有 ,

∴△ABF≌△CBE(SAS).


(2)解:△CEF是直角三角形.理由如下:

∵△EBF是等腰直角三角形,

∴∠BFE=∠FEB=45°,

∴∠AFB=180°﹣∠BFE=135°,

又∵△ABF≌△CBE,

∴∠CEB=∠AFB=135°,

∴∠CEF=∠CEB﹣∠FEB=135°﹣45°=90°,

∴△CEF是直角三角形.


【解析】(1)由四邊形ABCD是正方形可得出AB=CB,∠ABC=90°,再由△EBF是等腰直角三角形可得出BE=BF,通過角的計算可得出∠ABF=∠CBE,利用全等三角形的判定定理SAS即可證出△ABF≌△CBE;(2)根據(jù)△EBF是等腰直角三角形可得出∠BFE=∠FEB,通過角的計算可得出∠AFB=135°,再根據(jù)全等三角形的性質(zhì)可得出∠CEB=∠AFB=135°,通過角的計算即可得出∠CEF=90°,從而得出△CEF是直角三角形.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】為弘揚中華傳統(tǒng)文化,某校組織八年級1000名學生參加漢字聽寫大賽.為了解學生整體聽寫能力,從中抽取部分學生的成績(得分取正整數(shù),滿分為100分)進行統(tǒng)計分析,請根據(jù)尚未完成的下列圖表,解答下列問題:

組別

分數(shù)段

頻數(shù)

頻率

50.5~60.5

16

0.08

60.5~70.5

30

0.15

70.5~80.5

m

0.25

80.5~90.5

80

n

90.5~100.5

24

0.12

(1)寫出表中:m,n,此樣本中成績的中位數(shù)落在第幾組內(nèi);

(2)補全頻數(shù)直方圖;

(3)若成績超過80分為優(yōu)秀,該校八年級學生中漢字聽寫能力優(yōu)秀的約有多少人?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀下列材料:

小明遇到一個問題:在中,,,三邊的長分別為、、,求的面積.

小明是這樣解決問題的:如圖①所示,先畫一個正方形網(wǎng)格(每個小正方形的邊長為),再在網(wǎng)格中畫出格點(即三個頂點都在小正方形的頂點處),從而借助網(wǎng)格就能計算出的面積.他把這種解決問題的方法稱為構(gòu)圖法.

參考小明解決問題的方法,完成下列問題:

)圖是一個的正方形網(wǎng)格(每個小正方形的邊長為) .

①利用構(gòu)圖法在答卷的圖中畫出三邊長分別為、的格點

②計算①中的面積為__________.(直接寫出答案)

)如圖,已知,以為邊向外作正方形,連接

①判斷面積之間的關(guān)系,并說明理由.

②若,,直接寫出六邊形的面積為__________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】將兩個直角三角尺的頂點O疊放在一起

1)如圖(1)若∠BOD=35°,則∠AOC=___;若∠AOC=135°,則∠BOD=___

2)如圖(2)若∠AOC=140°,則∠BOD=___;

3)猜想∠AOC與∠BOD的大小關(guān)系,并結(jié)合圖(1)說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商場將每件進價為80元的某種商品原來按每件100元出售,一天可售出100件.后來經(jīng)過市場調(diào)查,發(fā)現(xiàn)這種商品單價每降低1元,其銷量可增加10件.
(1)求商場經(jīng)營該商品原來一天可獲利潤多少元?
(2)設后來該商品每件降價x元,商場一天可獲利潤y元.
①若商場經(jīng)營該商品一天要獲利潤2160元,則每件商品應降價多少元?
②求出y與x之間的函數(shù)關(guān)系式,并直接寫出當x取何值時,商場獲利潤不少于2160元.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:等腰三角形OAB在直角坐標系中的位置如下圖,點A的坐標為( ,3),點B的坐標為(﹣6,0).
(1)若△OAB關(guān)于y軸的軸對稱圖形是△OA'B',請直接寫出A、B的對稱點A'、B'的坐標;
(2)若將△OAB沿x軸向右平移a個單位,此時點A恰好落在反比例函數(shù) 的圖象上,求a的值;
(3)若△OAB繞點O按逆時針方向旋轉(zhuǎn)30°,此時點B恰好落在反比例函數(shù) 的圖象上,求k的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,某沿海開放城市A接到臺風警報,在該市正南方向100kmB處有一臺風中心,沿BC方向以20km/h的速度向D移動,已知城市ABC的距離AD=60km,那么臺風中心經(jīng)過多長時間從B點移到D點?如果在距臺風中心30km的圓形區(qū)域內(nèi)都將有受到臺風的破壞的危險,正在D點休閑的游人在接到臺風警報后的幾小時內(nèi)撤離才可脫離危險?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列變形中:

①由方程=2去分母,得x﹣12=10;

②由方程x=兩邊同除以,得x=1;

③由方程6x﹣4=x+4移項,得7x=0;

④由方程2﹣兩邊同乘以6,得12﹣x﹣5=3(x+3).

錯誤變形的個數(shù)是( 。﹤

A. 4 B. 3 C. 2 D. 1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線AB,CD相交于點O,OMAB

1)∠AOC的鄰補角為    (寫出一個即可);

2)若∠1=∠2,判斷ONCD的位置關(guān)系,并說明理由;

3)若∠1=BOC,求∠MOD的度數(shù).

查看答案和解析>>

同步練習冊答案