【題目】如圖,某沿海開放城市A接到臺(tái)風(fēng)警報(bào),在該市正南方向100km的B處有一臺(tái)風(fēng)中心,沿BC方向以20km/h的速度向D移動(dòng),已知城市A到BC的距離AD=60km,那么臺(tái)風(fēng)中心經(jīng)過多長時(shí)間從B點(diǎn)移到D點(diǎn)?如果在距臺(tái)風(fēng)中心30km的圓形區(qū)域內(nèi)都將有受到臺(tái)風(fēng)的破壞的危險(xiǎn),正在D點(diǎn)休閑的游人在接到臺(tái)風(fēng)警報(bào)后的幾小時(shí)內(nèi)撤離才可脫離危險(xiǎn)?
【答案】2.5小時(shí)內(nèi)撤離才可脫離危險(xiǎn)
【解析】
試題首先根據(jù)勾股定理計(jì)算BD的長,再根據(jù)時(shí)間=路程÷速度進(jìn)行計(jì)算;再根據(jù)在30千米范圍內(nèi)都要受到影響,先求出從點(diǎn)B到受影響的距離與結(jié)束影響的距離,再根據(jù)時(shí)間=路程÷速度計(jì)算,然后求出時(shí)間段即可.
解:∵AB=100km,AD=60km,
∴在Rt△ABD中,根據(jù)勾股定理,得BD==80km,
則臺(tái)風(fēng)中心經(jīng)過80÷20=4小時(shí)從B移動(dòng)到D點(diǎn);
如圖,∵距臺(tái)風(fēng)中心30km的圓形區(qū)域內(nèi)都會(huì)受到不同程度的影響,
∴人們要在臺(tái)風(fēng)中心到達(dá)E點(diǎn)之前撤離,
∵BE=BD﹣DE=80﹣30=50km,
∴游人在=2.5小時(shí)內(nèi)撤離才可脫離危險(xiǎn).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于x的方程(m-1)x2+(m+1)x+3m-1=0,當(dāng)m_________時(shí),是一元一次方程;當(dāng)m_________時(shí),是一元二次方程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,給出了下列三個(gè)論斷:①對(duì)角線AC平分∠BAD;②CD=BC;③∠D+∠B=180°.在上述三個(gè)論斷中,若以其中兩個(gè)論斷作為條件,另外一個(gè)論斷作為結(jié)論,則可以得出______個(gè)正確的命題.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)E正方形ABCD外一點(diǎn),點(diǎn)F是線段AE上一點(diǎn),△EBF是等腰直角三角形,其中∠EBF=90°,連接CE、CF.
(1)求證:△ABF≌△CBE;
(2)判斷△CEF的形狀,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=x2+bx+c與x軸交于A(﹣1,0)和B(3,0)兩點(diǎn),與y軸交于點(diǎn)C,對(duì)稱軸與x軸交于點(diǎn)E,點(diǎn)D為頂點(diǎn),連接BD、CD、BC.
(1)求二次函數(shù)解析式及頂點(diǎn)坐標(biāo);
(2)點(diǎn)P為線段BD上一點(diǎn),若S△BCP= ,求點(diǎn)P的坐標(biāo);
(3)點(diǎn)M為拋物線上一點(diǎn),作MN⊥CD,交直線CD于點(diǎn)N,若∠CMN=∠BDE,請(qǐng)直接寫出所有符合條件的點(diǎn)M的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,AC=BC,CD⊥AB于D點(diǎn),M,N是AC,BC上的動(dòng)點(diǎn),且∠MDN=90°,下列結(jié)論:①AM=CN;②四邊形MDNC的面積為定值;③AM2+BN2=MN2;④NM平分∠CND.其中正確的是 ( )
A. ①②③ B. ①②④ C. ①③④ D. ①②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,己知△ABC,任取一點(diǎn)O,連AO,BO,CO,并取它們的中點(diǎn)D,E,F(xiàn),得△DEF,則下列說法正確的個(gè)數(shù)是( ) ①△ABC與△DEF是位似圖形; ②△ABC與△DEF是相似圖形;
③△ABC與△DEF的周長比為1:2;④△ABC與△DEF的面積比為4:1.
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,△ABC三個(gè)頂點(diǎn)的坐標(biāo)分別是A(1,3),B(﹣2,﹣2),C(2,﹣1).
(1)畫出△ABC關(guān)于y軸對(duì)稱的△A1B1C1;
(2)寫出點(diǎn)A1,B1,C1的坐標(biāo);
(3)求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將三角形ABC沿射線BA方向平移到三角形A'B'C'的位置,連接AC'.
(1)AA'與CC'的位置關(guān)系為 ;
(2)求證:∠A'+∠CAC'+∠AC'C=180°;
(3)設(shè)∠ACB=y,試探索∠CAC'與x,y之間的數(shù)量關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com