【題目】如圖,四邊形ABCD是⊙O的內(nèi)接四邊形,AB為⊙O的直徑,連結(jié)BD.若∠BCD=120°,則∠ABD的大小為( )
A.60°
B.50°
C.40°
D.30°
【答案】D
【解析】解:∵四邊形ABCD是⊙O的內(nèi)接四邊形,
∴∠BAD+∠BCD=180°,
∵∠BCD=120°,
∴∠BAD=60°,
∵AB為⊙O的直徑,
∴∠ADB=90°,
∴∠ABD=90°﹣60°=30°,
所以答案是:D.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用圓周角定理和圓內(nèi)接四邊形的性質(zhì)的相關(guān)知識可以得到問題的答案,需要掌握頂點(diǎn)在圓心上的角叫做圓心角;頂點(diǎn)在圓周上,且它的兩邊分別與圓有另一個交點(diǎn)的角叫做圓周角;一條弧所對的圓周角等于它所對的圓心角的一半;把圓分成n(n≥3):1、依次連結(jié)各分點(diǎn)所得的多邊形是這個圓的內(nèi)接正n邊形2、經(jīng)過各分點(diǎn)作圓的切線,以相鄰切線的交點(diǎn)為頂點(diǎn)的多邊形是這個圓的外切正n邊形.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列敘述中,正確的有( )
①如果,那么;②滿足條件的n不存在;
③任意一個三角形的三條高所在的直線相交于一點(diǎn),且這點(diǎn)一定在三角形的內(nèi)部;
④ΔABC中,若∠A+∠B=2∠C, ∠A-∠C=40°,則這個△ABC為鈍角三角形.
A. 0個 B. 1個 C. 2個 D. 3個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,以O(shè)為圓心的圓與直線y=﹣x+ 交于A、B兩點(diǎn),若△OAB恰為等邊三角形,則弧AB的長度為( )
A. π
B.π
C. π
D. π
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】完成下列證明:
已知:AB//CD,連AD交BC于點(diǎn)F,∠1=∠2,求證:∠B+∠CDE=180°
證明:∵∠1= ( )
又∵∠1=∠2
∴∠BFD=∠2( )
∴BC// ( )
∴∠C+ =180°( )
又∵AB//CD
∴∠B=∠C( )
∴∠B+∠CDE=180°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線l分別交AB,CD于點(diǎn)M,N(點(diǎn)M在點(diǎn)N的右側(cè)),若∠1=∠2
(1)求證:AB//CD;
(2)如圖,點(diǎn)E、F在AB,CD之間,且在MN的左側(cè),若∠MEF+∠EFN=255°,求∠AME+∠FNC的度數(shù);
(3)如圖,點(diǎn)H在直線AB上,且位于點(diǎn)M的左側(cè);點(diǎn)K在直線MN上,且在直線AB的上方.點(diǎn)Q在∠MND的角平分線NP上,且∠KHM=2∠MHQ,若∠HQN+∠HKN=75°,直接寫出∠PND和∠QHB的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,矩形OABC的對角線OB、AC相交于點(diǎn)D,BE∥AC,AE∥OB.函數(shù) (k>0,x>0)的圖象經(jīng)過點(diǎn)E.若點(diǎn)A、C的坐標(biāo)分別為(3,0)、(0,2),則k的值為( )
A.3
B.4
C.4.5
D.6
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠1+∠2=180°,∠A=∠C,DA平分∠BDF.
(1)AE與FC會平行嗎?說明理由;
(2)AD與BC的位置關(guān)系如何?為什么?
(3)BC平分∠DBE嗎?為什么.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】直線、之間有一個直角三角形,其中,.
(1)如圖,點(diǎn)在直線上,、在直線上,若,.試說明:;
(2)將三角形如圖放置,直線,點(diǎn)、分別在直線、上,且平分.求的度數(shù);(用的代數(shù)式表示)
(3)在(2)的前提下,直線平分交直線于,如圖.在取不同數(shù)值時,的大小是否發(fā)生變化?若不變求其值,若變化請求出變化的范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知矩形AOBC的頂點(diǎn)C的坐標(biāo)是(2,4),動點(diǎn)P從點(diǎn)A出發(fā),沿線段AO向終點(diǎn)O運(yùn)動,同時動點(diǎn)Q從點(diǎn)B出發(fā),沿線段BC向終點(diǎn)C運(yùn)動.點(diǎn)P、Q的運(yùn)動速度均為每秒1個單位,設(shè)運(yùn)動時間為t秒,過點(diǎn)P作PE⊥AO交AB于點(diǎn)E.
(1)求直線AB的解析式;
(2)在動點(diǎn)P、Q運(yùn)動的過程中,以B、Q、E為頂點(diǎn)的三角形是直角三角形,直按寫出t的值;
(3)設(shè)△PEQ的面積為S,求S與時間t的函數(shù)關(guān)系,并指出自變量t的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com