【題目】學(xué)習(xí)了統(tǒng)計(jì)知識后,數(shù)學(xué)老師請數(shù)學(xué)興趣小組的同學(xué)就本班同學(xué)的上學(xué)方式進(jìn)行了一次調(diào)查統(tǒng)計(jì).如圖甲乙是數(shù)學(xué)興趣小組的同學(xué)們通過手機(jī)和整理數(shù)據(jù)后,繪制的兩幅不完整的統(tǒng)計(jì)圖.

請你根據(jù)圖中提供的信息,解答一下的問題:

1)在扇形統(tǒng)計(jì)圖中,計(jì)算出步行部分所應(yīng)對的圓心角的度數(shù).

2)請問該班共有多少名學(xué)生?

3)在圖中將表示乘車的部分補(bǔ)充完整.

【答案】1108;(240;(3)見解析

【解析】

1)利用360°乘以對應(yīng)的百分比即可求得扇形圓心角的度數(shù);

2)根據(jù)騎車的人數(shù)是20人,所占的百分比是50%,即可求得總?cè)藬?shù);

3)用(2)中求得的總數(shù)減去其他各組的人數(shù)求得步行的人數(shù).

解:(1;

2(人);

340-20-12=8(人).

如圖所示

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于的一元二次方程x2-(k+2)x+k-1=0

(1)若方程的一個(gè)根為 -1,求的值和方程的另一個(gè)根;

(2)求證:不論取何值,該方程都有兩個(gè)不相等的實(shí)數(shù)根

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】試解答下列問題:

(1)在圖1我們稱之為“8字形”,請直接寫出∠A、∠B、∠C、∠D之間的數(shù)量關(guān)系: ;

(2)仔細(xì)觀察,在圖2中“8字形”的個(gè)數(shù)是 個(gè);

(3) 在圖2中,若∠D=40°,∠B=36°,∠DAB和∠BCD的平分線AP和CP相交于點(diǎn)P,并且與CD、AB分別相交于MN.試求∠P的度數(shù);

(4)如果圖2中∠D和∠B為任意角時(shí),其他條件不變,試寫出∠B與∠P、∠D之間數(shù)量關(guān)系

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀理如圖1,在平面內(nèi)選一定點(diǎn)O,引一條有方向的射線Ox,再選定一個(gè)單位長度,那么平面上任一點(diǎn)M的位置可由∠MOx的度數(shù)θ與OM的長度m確定,有序數(shù)對(θ,m)稱為M點(diǎn)的“極坐標(biāo)”,這樣建立的坐標(biāo)系稱為“極坐標(biāo)系”。應(yīng)用:在圖2的極坐標(biāo)系下,如果正六邊形的邊長為2,有一邊OA在射線Ox上,則正六邊形的頂點(diǎn)C的極坐標(biāo)應(yīng)記為___.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在□ABCD中,BC=2ABMAD的中點(diǎn),CEAB,垂足為E,求證:∠DME=3AEM.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)y=ax+b(a≠0)的圖象與反比例函數(shù)y= (k≠0)的圖象交于第二、四象限內(nèi)的A、B兩點(diǎn),與y軸交于C點(diǎn),過點(diǎn)A作AH⊥y軸,垂足為H,OH=3,tan∠AOH=,點(diǎn)B的坐標(biāo)為(m,-2).

(1)求△AHO的周長;

(2)求該反比例函數(shù)和一次函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD,EAD的中點(diǎn),將△ABE沿直線BE折疊后得到△GBE,延長BGCD于點(diǎn)F. AB=6,BC=,FD的長為( )

A. 2B. 4C. 6D. 23

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)E是正方形ABCD對角線AC上一點(diǎn),EFAB,EGBC,垂足分別為E,F,若正方形ABCD的周長是40 cm.

(1)求證:四邊形BFEG是矩形;

(2)求四邊形EFBG的周長;

(3)當(dāng)AF的長為多少時(shí),四邊形BFEG是正方形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點(diǎn)A,B,C,D均在O上,CD為ACE的角平分線.

(1)求證:ABD為等腰三角形;

(2)若DCE=45°,BD=6,求O的半徑.

查看答案和解析>>

同步練習(xí)冊答案