【題目】感知定義
在一次數(shù)學活動課中,老師給出這樣一個新定義:如果三角形的兩個內(nèi)角α與β滿足α+2β=90°,那么我們稱這樣的三角形為“類直角三角形”.
嘗試運用
(1)如圖1,在Rt△ABC中,∠C=90°,BC=3,AB=5,BD是∠ABC的平分線.
①證明△ABD是“類直角三角形”;
②試問在邊AC上是否存在點E(異于點D),使得△ABE也是“類直角三角形”?若存在,請求出CE的長;若不存在,請說明理由.
類比拓展
(2)如圖2,△ABD內(nèi)接于⊙O,直徑AB=10,弦AD=6,點E是弧AD上一動點(包括端點A,D),延長BE至點C,連結(jié)AC,且∠CAD=∠AOD,當△ABC是“類直角三角形”時,求AC的長.
【答案】(1)①證明見解析;②CE=;(2)當△ABC是“類直角三角形”時,AC的長為或.
【解析】
(1)①證明∠A+2∠ABD=90°即可解決問題.
②如圖1中,假設(shè)在AC邊設(shè)上存在點E(異于點D),使得△ABE是“類直角三角形”,證明△ABC∽△BEC,可得,由此構(gòu)建方程即可解決問題.
(2)分兩種情形:①如圖2中,當∠ABC+2∠C=90°時,作點D關(guān)于直線AB的對稱點F,連接FA,FB.則點F在⊙O上,且∠DBF=∠DOA.
②如圖3中,由①可知,點C,A,F共線,當點E與D共線時,由對稱性可知,BA平分∠FBC,可證∠C+2∠ABC=90°,利用相似三角形的性質(zhì)構(gòu)建方程即可解決問題.
(1)①證明:如圖1中,
∵BD是∠ABC的角平分線,
∴∠ABC=2∠ABD,
∵∠C=90°,
∴∠A+∠ABC=90°,
∴∠A+2∠ABD=90°,
∴△ABD為“類直角三角形”;
②如圖1中,假設(shè)在AC邊設(shè)上存在點E(異于點D),使得△ABE是“類直角三角形”,
在Rt△ABC中,∵AB=5,BC=3,
∴AC=,
∵∠AEB=∠C+∠EBC>90°,
∴∠ABE+2∠A=90°,
∵∠ABE+∠A+∠CBE=90°,
∴∠A=∠CBE,
∴△ABC∽△BEC,
∴,
∴CE=,
(2)∵AB是直徑,
∴∠ADB=90°,
∵AD=6,AB=10,
∴BD=,
①如圖2中,當∠ABC+2∠C=90°時,作點D關(guān)于直線AB的對稱點F,連接FA,FB,則點F在⊙O上,且∠DBF=∠DOA,
∵∠DBF+∠DAF=180°,且∠CAD=∠AOD,
∴∠CAD+∠DAF=180°,
∴C,A,F共線,
∵∠C+∠ABC+∠ABF=90°,
∴∠C=∠ABF,
∴△FAB∽△FBC,
∴,即 ,
∴AC=.
②如圖3中,由①可知,點C,A,F共線,當點E與D共線時,由對稱性可知,BA平分∠FBC,
∴∠C+2∠ABC=90°,
∵∠CAD=∠CBF,∠C=∠C,
∴△DAC∽△FBC,
∴,即,
∴CD=(AC+6),
在Rt△ADC中,[ (ac+6)]2+62=AC2,
∴AC=或﹣6(舍棄),
綜上所述,當△ABC是“類直角三角形”時,AC的長為 或.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,是住宅區(qū)內(nèi)的兩幢樓,它們的高,兩樓間的距離,現(xiàn)需了解甲樓對乙樓的采光的影響情況.
(1)當太陽光與水平線的夾角為角時,求甲樓的影子在乙樓上有多高(答案可用根號表示);
(2)若要甲樓的影子剛好不落在乙樓的墻上,此時太陽與水平線的夾角為多少度?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】隨著網(wǎng)購的日益盛行,物流行業(yè)已逐漸成為運輸業(yè)的主力,已知某大型物流公司有A、B兩種型號的貨車,A型貨車的滿載量是B型貨車滿載量的2倍多4噸,在兩車滿載的情況下,用A型貨車載1400噸貨物與用B型貨車載560噸貨物的用車數(shù)量相同.
(1)1輛A型貨車和1輛B型貨車的滿載量分別是多少?
(2)該物流公司現(xiàn)有120噸貨物,可以選擇上述兩種貨車運送,在滿載的情況下,有幾種方案可以一次性運完?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知點D,E是半圓O上的三等分點,C是弧DE上的一個動點,連結(jié)AC和BC,點I是△ABC的內(nèi)心,若⊙O的半徑為3,當點C從點D運動到點E時,點I隨之運動形成的路徑長是_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小邱同學根據(jù)學習函數(shù)的經(jīng)驗,研究函數(shù)y=的圖象與性質(zhì).通過分析,該函數(shù)y與自變量x的幾組對應(yīng)值如下表,并畫出了部分函數(shù)圖象如圖所示.
x | 1 |
|
|
| 3 | 4 | 5 | 6 | … |
y | ﹣1 | ﹣2 | ﹣3.4 | ﹣7.5 | 2.4 | 1.4 | 1 | 0.8 | … |
(1)函數(shù)y=的自變量x的取值范圍是 ;
(2)在圖中補全當1≤x<2的函數(shù)圖象;
(3)觀察圖象,寫出該函數(shù)的一條性質(zhì): ;
(4)若關(guān)于x的方程=x+b有兩個不相等的實數(shù)根,結(jié)合圖象,可知實數(shù)b的取值范圍是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某中學組織學生到商場參加社會實踐活動,他們參與了某種品牌運動鞋的銷售工作,已知該運動鞋每雙的進價為120元,為尋求合適的銷售價格進行了4天的試銷,試銷情況如表所示:
(1)觀察表中數(shù)據(jù),x,y滿足什么函數(shù)關(guān)系?請求出這個函數(shù)關(guān)系式;
(2)若商場計劃每天的銷售利潤為3000元,則其單價應(yīng)定為多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,平面直角坐標系中,直線與軸、軸分別交于點和點,直線與軸、軸分別交于點和點,直線與相交于點,線段、的長是-元二次方程的兩根(), ,點的橫坐標為3,反比例函數(shù)的圖象經(jīng)過點.
(1)若直線與反比例函數(shù)圖象上除點外的另一交點為,求的面積:若點在軸上,若點在軸上,求的最小值:
(2)若點在坐標軸.上,在平面內(nèi)存在一點,使以點、、、為頂點的四邊形是矩形且線段為矩形的一條邊, 直接寫出符合條件的點坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=7,BC=4,∠ABC=45°,射線CD⊥AB于D,點P為射線CD上一動點,以PD為直徑的⊙O交PA、PB分別為E、F,設(shè)CP=x.
(1)求sin∠ACD的值.
(2)在點P的整個運動過程中:
①當⊙O與射線CA相切時,求出所有滿足條件時x的值;
②當x為何值時,四邊形DEPF為矩形,并求出矩形DEPF的面積.
(3)如果將△ADC繞點D順時針旋轉(zhuǎn)150°,得△A′DC′,若點A′和點C′有且只有一個點在圓內(nèi),則x的取值范圍是 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com