【題目】如圖1,在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),點(diǎn)A的坐標(biāo)為(﹣8,0),點(diǎn)B的坐標(biāo)為(﹣8,6),直線BC∥x軸,交y軸于點(diǎn)C,將四邊形OABC繞點(diǎn)O按順時針方向旋轉(zhuǎn)α度得到四邊形OA′B′C′,此時直線OA′、直線B′C′分別與直線BC相交于點(diǎn)P、Q.
(1)四邊形OABC的形狀是 , 當(dāng)α=90°時, 的值是 .
(2)①如圖2,當(dāng)四邊形OA′B′C′的頂點(diǎn)B′落在y軸正半軸上時,求 的值;
②如圖3,當(dāng)四邊形OA′B′C′的頂點(diǎn)B′落在BC的延長線上時,求△OPB′的面積.
(3)在四邊形OABC旋轉(zhuǎn)過程中,當(dāng)0°<α≤180°時,是否存在這樣的點(diǎn)P和點(diǎn)Q,使BP= BQ?若存在,請直接寫出點(diǎn)P的坐標(biāo);若不存在,請說明理由.
【答案】
(1)矩形;
(2)
解:①圖2,
∵∠POC=∠B′OA′,∠PCO=∠OA′B′=90°,
∴△COP∽△A′OB′.
∴ ,即 ,
∴CP= ,BP=BC﹣CP= .
同理△B′CQ∽△B′C′O,
∴ ,
∴
∴CQ=3,BQ=BC+CQ=11.
∴ ,
∴ ;
②圖3,在△OCP和△B′A′P中, ,
∴△OCP≌△B′A′P(AAS).
∴OP=B′P.
設(shè)B′P=x,
在Rt△OCP中,(8﹣x)2+62=x2,
解得x= .
∴S△OPB′= × ×6=
(3)
解:存在這樣的點(diǎn)P和點(diǎn)Q,使BP= BQ.
點(diǎn)P的坐標(biāo)是P1(﹣9﹣ ,6),P2(﹣ ,6).
理由:
過點(diǎn)Q作QH⊥OA′于H,連接OQ,則QH=OC′=OC,
∵S△POQ= PQOC,S△POQ= OPQH,
∴PQ=OP.
設(shè)BP=x,
∵BP= BQ,
∴BQ=2x,
如圖4,當(dāng)點(diǎn)P在點(diǎn)B左側(cè)時,
OP=PQ=BQ+BP=3x,
在Rt△PCO中,(8+x)2+62=(3x)/span>2,
解得x1=1+ ,x2=1﹣ (不符實(shí)際,舍去).
∴PC=BC+BP=9+ ,
∴P(﹣9﹣ ,6).
如圖5,當(dāng)點(diǎn)P在點(diǎn)B右側(cè)時,
∴OP=PQ=BQ﹣BP=x,PC=8﹣x.
在Rt△PCO中,(8﹣x)2+62=x2,解得x= .
∴PC=BC﹣BP=8﹣ = ,
∴P(﹣ ,6),
綜上可知,存在點(diǎn)P(﹣9﹣ ,6)或(﹣ ,6),使BP= BQ.
【解析】解:(1)圖1,四邊形OA′B′C′的形狀是矩形;
∵點(diǎn)A的坐標(biāo)為(﹣8,0),點(diǎn)B(﹣8,6),
∴AB∥OC,
∵BC∥x軸,
∴四邊形OABC是平行四邊形.
又OC⊥OA,
∴平行四邊形OABC的形狀是矩形;
當(dāng)α=90°時,P與C重合,如圖1,
BP=8,BQ=BP+OC=8+6=14,
∴ ,
即是矩形的長與寬的比,則 .
所以答案是矩形, ;
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC與△A′B′C′都是等腰三角形,且AB=AC=5,A′B′=A′C′=3,若∠B+∠B′=90°,則△ABC與△A′B′C′的面積比為
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】設(shè)邊長為3的正方形的對角線長為a.下列關(guān)于a的四種說法:
①a是無理數(shù);
②a可以用數(shù)軸上的一個點(diǎn)來表示;
③3<a<4;
④a是18的算術(shù)平方根.
其中,所有正確說法的序號是( )
A.①④
B.②③
C.①②④
D.①③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y1=x2+mx+n的圖象經(jīng)過點(diǎn)P(﹣3,1),對稱軸是經(jīng)過(﹣1,0)且平行于y軸的直線.
(1)求m,n的值.
(2)如圖,一次函數(shù)y2=kx+b的圖象經(jīng)過點(diǎn)P,與x軸相交于點(diǎn)A,與二次函數(shù)的圖象相交于另一點(diǎn)B,點(diǎn)B在點(diǎn)P的右側(cè),PA:PB=1:5,求一次函數(shù)的表達(dá)式.
(3)直接寫出y1>y2時x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一測量愛好者,在海邊測量位于正東方向的小島高度AC,如圖所示,他先在點(diǎn)B測得山頂點(diǎn)A的仰角為30°,然后向正東方向前行62米,到達(dá)D點(diǎn),在測得山頂點(diǎn)A的仰角為60°(B、C、D三點(diǎn)在同一水平面上,且測量儀的高度忽略不計(jì)).求小島高度AC(結(jié)果精確的1米,參考數(shù)值: )
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,D是BC邊上的一點(diǎn),E是AD的中點(diǎn),過A點(diǎn)作BC的平行線交CE的延長線于F,且AF=BD,連接BF.
(1)求證:D是BC的中點(diǎn).
(2)如果AB=AC,試判斷四邊形AFBD的形狀,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB為⊙O的切線,切點(diǎn)為B,連接AO,AO與⊙O交于點(diǎn)C,BD為⊙O的直徑,連接CD.若∠A=30°,⊙O的半徑為2,則圖中陰影部分的面積為( 。
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為增強(qiáng)學(xué)生環(huán)保意識,某中學(xué)組織全校2000名學(xué)生參加環(huán)保知識大賽,比賽成績均為整數(shù),從中抽取部分同學(xué)的成績進(jìn)行統(tǒng)計(jì),并繪制成如圖統(tǒng)計(jì)圖.請根據(jù)圖中提供的信息,解答下列問題:
(1)若抽取的成績用扇形圖來描述,則表示“第三組(79.5~89.5)”的扇形的圓心角為 度
(2)若成績在90分以上(含90分)的同學(xué)可以獲獎,請估計(jì)該校約有多少名同學(xué)獲獎?
(3)某班準(zhǔn)備從成績最好的4名同學(xué)(男、女各2名)中隨機(jī)選取2名同學(xué)去社區(qū)進(jìn)行環(huán)保宣傳,則選出的同學(xué)恰好是1男1女的概率為
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,半徑為R,圓心角為n°的扇形面積是S扇形=,由弧長l=,得S扇形==R=lR.通過觀察,我們發(fā)現(xiàn)S扇形=lR類似于S三角形=×底×高.
類比扇形,我們探索扇環(huán)(如圖②,兩個同心圓圍成的圓環(huán)被扇形截得的一部分交作扇環(huán))的面積公式及其應(yīng)用.
(1)設(shè)扇環(huán)的面積為S扇環(huán) , 的長為l1 , 的長為l2 , 線段AD的長為h(即兩個同心圓半徑R與r的差).類比S梯形=×(上底+下底)×高,用含l1 , l2 , h的代數(shù)式表示S扇環(huán) , 并證明;
(2)用一段長為40m的籬笆圍成一個如圖②所示的扇環(huán)形花園,線段AD的長h為多少時,花園的面積最大,最大面積是多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com