【題目】四邊形的內(nèi)接四邊形,,,垂足為

1)如圖1,求證:;

2)如圖2,點(diǎn)的延長(zhǎng)線上,且,連接、,求證:

3)如圖3,在(2)的條件下,若,,求的值.

【答案】1)證明見解析;(2)證明見解析;(3

【解析】

1)由圓周角定理得出∠DAC=∠CBD,證出∠ACB90°CBD,由等腰三角形的性質(zhì)得出∠ABC=∠ACB90°CBD,得出∠BAC180°2ABC2CBD,即可得出結(jié)論;

2)由等腰三角形的性質(zhì)得出∠FCD=∠CFD,證出∠CFD=∠CAD,進(jìn)而得出∠CFD=∠CBD,即可得出結(jié)論;

3)證出ABAFAC10設(shè)AExCE10x,由勾股定理得出AB2AE2BC2CE2,得出102x2=(4210x2,求出AE6,CE4,由勾股定理得出BE8,由三角函數(shù)定義得出,求出DE3,由勾股定理得出AD3,過點(diǎn)DDHAB,垂足為H,由面積法求出DH,由三角函數(shù)定義即可得出答案.

1)證明:如圖1,

,

,

,

2)證明:如圖2,

,

3)解:如圖3,

,垂直平分,

設(shè),

中,

中,

,

,解得

,

,

,

中,

過點(diǎn),垂足為

中,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,過原點(diǎn)O的直線與雙曲線y交于上Amn)、B,過點(diǎn)A的直線交x軸正半軸于點(diǎn)D,交y軸負(fù)半軸于點(diǎn)E,交雙曲線y于點(diǎn)P

1)當(dāng)m2時(shí),求n的值;

2)當(dāng)ODOE12,且m3時(shí),求點(diǎn)P的坐標(biāo);

3)若ADDE,連接BE,BP,求△PBE的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在邊長(zhǎng)為1個(gè)單位長(zhǎng)度的小正方形組成的網(wǎng)格中,給出了格點(diǎn)△ABC(頂點(diǎn)是網(wǎng)格線的交點(diǎn))和點(diǎn)A1

1)畫出一個(gè)格點(diǎn)△A1B1C1,并使之是由△ABC平移后得到,且AA1是對(duì)應(yīng)點(diǎn);

2)畫出點(diǎn)B關(guān)于直線AC的對(duì)稱點(diǎn)D,并指出AD可以看作由ABA點(diǎn)經(jīng)過怎樣的旋轉(zhuǎn)而得的;

3)將△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)一定角度,使得AB落在(2)中的線段AD的位置,請(qǐng)作出旋轉(zhuǎn)后的三角形,并求在這一旋轉(zhuǎn)過程中△ABC掃過的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知一次函數(shù) y=kx-2 的圖象與 x 軸、y 軸分別交于 AB 兩點(diǎn),與反比例函數(shù)的圖象交于點(diǎn) C,且 AB=AC,則 k 的值為( )

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在 RtABC 中,∠C=90°,AD 平分∠BAC BC 于點(diǎn) D,O AB 上一點(diǎn),經(jīng)過點(diǎn) A、D 的⊙O 分別交 AB、AC 于點(diǎn) E、F,

1)求證:BC 是⊙O 切線;

2)設(shè) AB=mAF=n,試用含 m、n 的代數(shù)式表示線段 AD 的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】揚(yáng)州市五個(gè)一百工程在各校普遍開展,為了了解某校學(xué)生每天課外閱讀所用的時(shí)間情況,從該校學(xué)生中隨機(jī)抽取了部分學(xué)生進(jìn)行問卷調(diào)查,并將結(jié)果繪制成如圖不完整的頻數(shù)分布表和頻數(shù)分布直方圖.

每天課外閱讀時(shí)間t/h

頻數(shù)

頻率

0t≤0.5

24

0.5t≤1

36

0.3

1t≤1.5

0.4

1.5t≤2

12

b

合計(jì)

a

1

根據(jù)以上信息,回答下列問題:

1)表中a   ,b   ;

2)請(qǐng)補(bǔ)全頻數(shù)分布直方圖;

3)若該校有學(xué)生1200人,試估計(jì)該校學(xué)生每天課外閱讀時(shí)間超過1小時(shí)的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC中,∠ACB=45°DAC上一點(diǎn),AD=5,連接BD,將△ABD沿BD翻折至△EBD,點(diǎn)A的對(duì)應(yīng)點(diǎn)E點(diǎn)恰好落在邊BC上.延長(zhǎng)BC至點(diǎn)F,連接DF,若CF=2,tanABD=,則DF長(zhǎng)為(  )

A.B.C.5D.7

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形是正方形,是等邊三角形,為對(duì)角線(不含點(diǎn))上任意一點(diǎn),將繞點(diǎn)逆時(shí)針旋轉(zhuǎn)60°得到,連接、、

1)求證;

2)①當(dāng)點(diǎn)在何處時(shí),的值最。

②當(dāng)點(diǎn)在何處時(shí),的值最小,并說明理由;

3)當(dāng)的最小值為時(shí),求正方形的邊長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】北盤江大橋坐落于云南宜威與貴州水城交界處,橫跨云貴兩省,為目前世界第一高橋圖1是大橋的實(shí)物圖,圖2是從圖1中引申出的平面圖,測(cè)得橋護(hù)欄BG=1.8米,拉索AB與護(hù)欄的夾角是26°,拉索ED與護(hù)欄的夾角是60°,兩拉索底端距離BD300m,若兩拉索頂端的距離AE90m,請(qǐng)求出立柱AH的長(zhǎng).(tan26°≈0.5,sin26°≈0.41.7

查看答案和解析>>

同步練習(xí)冊(cè)答案