精英家教網 > 初中數學 > 題目詳情

【題目】如圖,一個拱形橋架可以近似看作是由等腰梯形ABD8D1和其上方的拋物線D1OD8組成.若建立如圖所示的直角坐標系,跨度AB=44米,∠A=45°,AC1=4米,點D2的坐標為(-13,-1.69),則橋架的拱高OH=________.

【答案】7.24

【解析】

根據題意假設適當的解析式,借助于題中數據分別求出D1點橫坐標以及D1C1的長即可解答.

設拋物線D1OD8的解析式為y=ax2,將x=-13,y=-1.69代入,解得a=-
∵橫梁D1D8=C1C8=AB-2AC1=36m
∴點D1的橫坐標是-18,代入y=-x2里可得y=3.24
又∵∠A=45°,
∴D1C1=AC1=4m
∴OH=3.24+4=7.24m.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,在長方形ABCD中,EAD的中點,將△ABE沿直線BE折疊后得到△GBE,延長BGCDF,連接EF,若AB=4,BC=6,DF的長為_______ .

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,等邊△ABC的邊長為 1,CDAB 于點 D,E 為射線 CD 上一點,以BE為邊在 BE 左側作等邊△BEF,則DF的最小值為_____

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】O在直線AB上,點A1、A2、A3,…在射線OA上,點B1、B2、B3,…在射線OB上,圖中的每一個實線段和虛線段的長均為一個單位長度,一個動點MO點出發(fā),按如圖所示的箭頭方向沿著實線段和以O為圓心的半圓勻速運動,速度為每秒1個單位長度,按此規(guī)律,則動點M到達A101點處所需時間為____秒.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖拋物線 y=ax2+bx﹣ x 軸交于 A(1,0)、B(6,0)兩點,D y 軸上一點,連接 DA,延長 DA 交拋物線于點 E.

(1)求此拋物線的解析式;

(2) E 點在第一象限過點 E EFx 軸于點 F,ADO AEF 的面積比為=,求出點 E 的坐標;

(3) D y 軸上的動點, D 點作與 x 軸平行的直線交拋物線于 M、N 兩點, 是否存在點 D,使 DA2=DMDN?若存在,請求出點 D 的坐標;若不存在,請說 明理由

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖是某種產品展開圖,高為3cm.

1)求這個產品的體積.

2)請為廠家設計一種包裝紙箱,使每箱能裝5件這種產品,要求沒有空隙且要使該紙箱所用材料盡可能少(紙的厚度不計,紙箱的表面積盡可能。,求此長方體的表面積.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】我們定義:如圖1、圖2、圖3,在中,把繞點順時針旋轉得到,把繞點逆時針旋轉得到,連接,當時,我們稱的“旋補三角形”,上的中線叫做的“旋補中線”,點叫做“旋補中心”.圖1、圖2、圖3中的均是的“旋補三角形”.

1)①如圖2,當為等邊三角形時,“旋補中線”的數量關系為:______;

②如圖3,當時,則“旋補中線”長為______.

2)在圖1中,當為任意三角形時,猜想“旋補中線”的數量關系,并給予證明.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖:在平行四邊形ABCD的邊AB,CD上截取AF,CE,使得AF=CE,連接EF,點M,N是線段EF上兩點,且EM=FN,連接AN,CM.

(1)求證:AFN≌△CEM;

(2)若∠CMF=107°,CEM=72°,求∠NAF的度數.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,AB為⊙O的直徑,AC=2,BC=4,CD=BD=DE,則CE=(  )

A. 3﹣ B. C. D.

查看答案和解析>>

同步練習冊答案