【題目】如圖,在□ABCD中,點(diǎn)E在BC邊上,點(diǎn)F在DC的延長(zhǎng)線上,且∠DAE=∠F.
(1)求證:△ABE∽△ECF;
(2)若AB=5,AD=8,BE=2,求FC的長(zhǎng)。
【答案】(1)欲求△ABE∽△ECF ,由已知得到兩三角形兩個(gè)對(duì)應(yīng)角相等,所以,兩三角行相似(2)FC=
【解析】
試題由題意根據(jù)平行四邊形的性質(zhì),可得到兩個(gè)三角形的對(duì)應(yīng)角相等,∴△ABE∽△ECF,再由相似比,得到所求的值。(1)證明:如圖.
∵四邊形ABCD是平行四邊形,
∴AB∥CD,AD∥BC.
∴∠B=∠ECF,∠DAE=∠AEB.……2分
又∵∠DAE=∠F,
∴∠AEB=∠F.
∴△ABE∽△ECF. ........................................................ 3分
(2)解:∵△ABE∽△ECF,
∴. ............................................................ 4分
∵四邊形ABCD是平行四邊形,
∴BC=AD=8.
∴EC=BCBE=82="6."
∴.
∴. ……………………………………………5分
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB⊥BC,射線CM⊥BC,且BC=4,AB=1,點(diǎn)P是線段BC(不與點(diǎn)B、C重合)上的動(dòng)點(diǎn),過(guò)點(diǎn)P作DP⊥AP交射線CM于點(diǎn)D,連結(jié)AD.
(1)如圖1,若BP=3,求△ABP的周長(zhǎng);
(2)如圖2,若DP平分∠ADC,試猜測(cè)PB和PC的數(shù)量關(guān)系,并說(shuō)明理由;
(3)若△PDC是等腰三角形,作點(diǎn)B關(guān)于AP的對(duì)稱點(diǎn)B′,連結(jié)B′D,則B′D=_____.(請(qǐng)直接寫(xiě)出答案)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】兩個(gè)工程隊(duì)共同參與一項(xiàng)筑路工程,甲隊(duì)單獨(dú)施工3個(gè)月,這時(shí)增加了乙隊(duì),兩隊(duì)又共同工作了2個(gè)月,總工程全部完成,已知甲隊(duì)單獨(dú)完成全部工程比乙隊(duì)單獨(dú)完成全部工程多用2個(gè)月,設(shè)甲隊(duì)單獨(dú)完成全部工程需個(gè)月,則根據(jù)題意可列方程中錯(cuò)誤的是( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一輛汽車(chē)開(kāi)往距離出發(fā)地的目的地,出發(fā)后第一小時(shí)內(nèi)按原計(jì)劃的速度勻速行駛,一小時(shí)后以原來(lái)速度的1.5倍勻速行駛,并比原計(jì)劃提前到達(dá)目的地,設(shè)前一個(gè)小時(shí)的行駛速度為
(1)直接用的式子表示提速后走完剩余路程的時(shí)間為
(2)求汽車(chē)實(shí)際走完全程所花的時(shí)間.
(3)若汽車(chē)按原路返回,司機(jī)準(zhǔn)備一半路程以的速度行駛,另一半路程以的速度行駛(),朋友提醒他一半時(shí)間以的速度行駛,另一半時(shí)間以的速度行駛更快,你覺(jué)得誰(shuí)的方案更快?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知y是x的反比例函數(shù),且當(dāng)x=2時(shí),y=﹣3,
(1)求y與x之間的函數(shù)關(guān)系式;
(2)畫(huà)出這個(gè)函數(shù)的圖象;
(3)試判斷點(diǎn)P(﹣2,3)是否在這個(gè)函數(shù)的圖象上.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】“軍運(yùn)會(huì)”期間,某紀(jì)念品店老板用5000元購(gòu)進(jìn)一批紀(jì)念品,由于深受顧客喜愛(ài),很快售完,老板又用6000元購(gòu)進(jìn)同樣數(shù)目的這種紀(jì)念品,但第二次每個(gè)進(jìn)價(jià)比第一次每個(gè)進(jìn)價(jià)多了2元.
(1)求該紀(jì)念品第一次每個(gè)進(jìn)價(jià)是多少元?
(2)老板以每個(gè)15元的價(jià)格銷(xiāo)售該紀(jì)念品,當(dāng)?shù)诙渭o(jì)念品售出時(shí),出現(xiàn)了滯銷(xiāo),于是決定降價(jià)促銷(xiāo),若要使第二次的銷(xiāo)售利潤(rùn)不低于900元,剩余的紀(jì)念品每個(gè)售價(jià)至少要多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)P為定角∠AOB的平分線上的一個(gè)定點(diǎn),且∠MPN與∠AOB互補(bǔ),若∠MPN在繞點(diǎn)P旋轉(zhuǎn)的過(guò)程中,其兩邊分別與OA、OB相交于M、N兩點(diǎn),則以下結(jié)論:(1)PM=PN恒成立;(2)OM+ON的值不變;(3)四邊形PMON的面積不變;(4)MN的長(zhǎng)不變,其中正確的個(gè)數(shù)為( )
A. 4B. 3C. 2D. 1
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某中學(xué)為了美化校園環(huán)境,計(jì)劃購(gòu)進(jìn)桂花樹(shù)和黃桷樹(shù)兩種樹(shù)苗共200棵,現(xiàn)通過(guò)調(diào)查了解到:若購(gòu)進(jìn)15棵桂花樹(shù)和6棵黃桷樹(shù)共需600元,若購(gòu)進(jìn)12棵桂花樹(shù)和5棵黃桷樹(shù)共需490元.
(1)求購(gòu)進(jìn)的桂花樹(shù)和黃桷樹(shù)的單價(jià)各是多少元?
(2)已知甲、乙兩個(gè)苗圃的兩種樹(shù)苗銷(xiāo)售價(jià)格和上述價(jià)格一樣,但有如下優(yōu)惠:甲苗圃:每購(gòu)買(mǎi)一棵黃桷樹(shù)送兩棵桂花樹(shù),購(gòu)買(mǎi)的其它桂花樹(shù)打9折.乙苗圃:購(gòu)買(mǎi)的黃桷樹(shù)和桂花樹(shù)都打7折.設(shè)購(gòu)買(mǎi)黃桷樹(shù)x棵,y1和y2分別表示到甲、乙兩個(gè)苗圃中購(gòu)買(mǎi)樹(shù)苗所需總費(fèi)用,求出y1和y2關(guān)于x的函數(shù)表達(dá)式;
(3)現(xiàn)在,學(xué)校根據(jù)實(shí)際需要購(gòu)買(mǎi)的黃桷樹(shù)的棵數(shù)不少于35棵且不超過(guò)40棵,請(qǐng)?jiān)O(shè)計(jì)一種購(gòu)買(mǎi)方案,使購(gòu)買(mǎi)的樹(shù)苗所花費(fèi)的總費(fèi)用最少.最少費(fèi)用是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】元旦放假期間,小明和小華準(zhǔn)備到西安的大雁塔(記為A)、白鹿原(記為B)、興慶公園(記為C)、秦嶺國(guó)家植物園(記為D)中的一個(gè)景點(diǎn)去游玩,他們各自在這四個(gè)景點(diǎn)中任選一個(gè),每個(gè)景點(diǎn)被選中的可能性相同
(1)求小明選擇去白鹿原游玩的概率;
(2)用樹(shù)狀圖或列表的方法求小明和小華選擇去同一個(gè)地方游玩的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com