【題目】如圖所示,在矩形ABCD中,AC、BD相交于點O,OE⊥BC于E,連接DE交OC于點F,作FG⊥BC于G.
(1)說明點G是線段BC的一個三等分點;
(2)請你依照上面的畫法,在原圖上畫出BC的一個四等分點(保留作圖痕跡,不必證明).
科目:初中數(shù)學 來源: 題型:
【題目】(感知)如圖①,在四邊形ABCD中,點P在邊AB上(點P不與點A、B重合),∠A=∠B=∠DPC=90°.易證:△DAP∽△PBC(不要求證明).
(探究)如圖②,在四邊形ABCD中,點P在邊AB上(點P不與點A、B重合),∠A=∠B=∠DPC.
(1)求證:△DAP~△PBC.
(2)若PD=5,PC=10,BC=9,求AP的長.
(應用)如圖③,在△ABC中,AC=BC=4,AB=6,點P在邊AB上(點P不與點A、B重合),連結CP,作∠CPE=∠A,PE與邊BC交于點E.當CE=3EB時,求AP的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(本小題滿分10分)已知二次函數(shù)
(1)當時,函數(shù)值隨的增大而減小,求的取值范圍。
(2)以拋物線的頂點為一個頂點作該拋物線的內接正三角形(,兩點在拋物線上),請問:△的面積是與無關的定值嗎?若是,請求出這個定值;若不是,請說明理由。
(3)若拋物線與軸交點的橫坐標均為整數(shù),求整數(shù)的值。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,在△ABC中,AD是BC邊上的中線.
(1)畫出與△ACD關于點D成中心對稱的三角形;
(2)找出與AC相等的線段;
(3)探究:△ABC中AB與AC的和與中線AD之間有何大小關系?并說明理由;
(4)若AB=5,AC=3,求線段AD的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在直角梯形ABCD中,AD∥BC,∠ABC=90°,AB=12,AD=4,BC=9,點P是AB上一動點.若△PAD與△PBC是相似三角形,則滿足條件的點P的個數(shù)有( )
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】兩個警察抓兩個小偷,目擊者說:兩個小偷分別躲藏在六個房間中的兩間,但不知道他們到底躲藏在哪兩間。而如果警察沖進了無人的房間,那么小偷就會趁機逃跑。如果兩個警察隨機地沖進兩個房間抓小偷,(1)至少能抓獲一個小偷的概率是多少?(2)兩個小偷全部抓獲的概率是多少?請簡單說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖①,△ABC與△CDE是等腰直角三角形,直角邊AC、CD在同一條直線上,點M、N分別是斜邊AB、DE的中點,點P為AD的中點,連接AE、BD.
(1)請直接寫出PM與PN的數(shù)量關系及位置關系 ;
(2)現(xiàn)將圖①中的△CDE繞著點C順時針旋轉α(0°<α<90°),得到圖②,AE與MP、BD分別交于點G、H.請直接寫出PM與PN的數(shù)量關系及位置關系 ;
(3)若圖②中的等腰直角三角形變成直角三角形,使BC=kAC,CD=kCE,如圖③,寫出PM與PN的數(shù)量關系,并加以證明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AE是圓O的直徑,點B在AE的延長線上,點D在圓O上,且AC⊥DC, AD平分∠EAC
(1)求證:BC是圓O的切線。
(2)若BE=8,BD=12,求圓O的半徑,
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,我國的一艘海監(jiān)船在釣魚島A附近沿正東方向航行,船在B點時測得釣魚島A在船的北偏東60°方向,船以50海里/時的速度繼續(xù)航行2小時后到達C點,此時釣魚島A在船的北偏東30°方向.請問船繼續(xù)航行多少海里與釣魚島A的距離最近?
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com