【題目】如圖,小紅同學(xué)用儀器測量一棵大樹AB的高度,在C處測得ADG=30°,在E處測得AFG=60°,CE=8米,儀器高度CD=1.5米,求這棵樹AB的高度(結(jié)果保留兩位有效數(shù)字,≈1.732).

【答案】8.4米

【解析】解:根據(jù)題意得:四邊形DCEF、DCBG是矩形,

GB=EF=CD=1.5米,DF=CE=8米,

設(shè)AG=x米,GF=y米,

在RtAFG中,tanAFG=tan60°===,

在RtADG中,tanADG=tan30°===,

x=4,y=4,

AG=4米,F(xiàn)G=4米,

AB=AG+GB=4+1.5≈8.4(米).

這棵樹AB的高度為8.4米

首先根據(jù)題意可得GB=EF=CD=1.5米,DF=CE=8米,然后設(shè)AG=x米,GF=y米,則在RtAFG與RtADG,利用正切函數(shù),即可求得x與y的關(guān)系,解方程組即可求得答案.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,在中,,DAB上的一點不與點A,B重合,連接CD,以點C為中心,把CD順時針旋轉(zhuǎn),得到CE,連接AE

如圖1,求證:;

如圖2,若,點GBC上一點,連接GD并延長,與EA的延長線交于點H,且,連接DEAC相交于點F,請寫出圖2中所有正切值為2的角.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線軸交于點,與軸交于點,拋物線經(jīng)過點,.軸上一動點,過點且垂直于軸的直線分別交直線及拋物線于點.

1)填空:點的坐標(biāo)為_________,拋物線的解析式為_________

2)當(dāng)點在線段上運動時(不與點,重合),

①當(dāng)為何值時,線段最大值,并求出的最大值;

②求出使為直角三角形時的值;

3)若拋物線上有且只有三個點到直線的距離是,請直接寫出此時由點,,構(gòu)成的四邊形的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知O為坐標(biāo)原點,AOB=30°ABO=90°,且點A的坐標(biāo)為(2,0).

(1) 求點B的坐標(biāo);

(2) 若二次函數(shù)y=ax2+bx+c的圖象經(jīng)過A、BO三點,求此二次函數(shù)的解析式;

(3) (2)中的二次函數(shù)圖象的OB(不包括點OB)上,是否存在一點C,使得四邊形ABCO的面積最大?若存在,求出這個最大值及此時點C的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在同一坐標(biāo)系中,函數(shù)yy=﹣kx+3的大致圖象可能是( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下列內(nèi)容,并答題:我們知道,計算n邊形的對角線條數(shù)公式為: nn3).

如果一個n邊形共有20條對角線,那么可以得到方程nn3=20

整理得n2﹣3n﹣40=0;解得n=8n=﹣5

n為大于等于3的整數(shù),∴n=﹣5不合題意,舍去.

n=8,即多邊形是八邊形.

根據(jù)以上內(nèi)容,問:

(1)若一個多邊形共有14條對角線,求這個多邊形的邊數(shù);

(2)A同學(xué)說:我求得一個多邊形共有10條對角線,你認(rèn)為A同學(xué)說法正確嗎?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,AB:BC=3:5,點E是對角線BD上一動點(不與點B,D重合),將矩形沿過點E的直線MN折疊,使得點A,B的對應(yīng)點G,F分別在直線AD與BC上,當(dāng)△DEF為直角三角形時,CN:BN的值為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,王華同學(xué)在晚上由路燈AC走向路燈BD,當(dāng)他走到點P時,發(fā)現(xiàn)身后他影子的頂部剛好接觸到路燈AC的底部,當(dāng)他向前再步行12m到達(dá)Q點時,發(fā)現(xiàn)身前他影子的頂部剛好接觸到路燈BD的底部.已知王華同學(xué)的身高是1.6m,兩個路燈的高度都是9.6m.

(1)求兩個路燈之間的距離;

(2)當(dāng)王華同學(xué)走到路燈BD處時,他在路燈AC下的影子長是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點CAB為直徑的圓O上,AD與過點C的切線垂直,垂足為點D,AD交圓O于點E.

1)求證:AC平分∠DAB;

2)連接BE,若BE=6sinCAD=,求圓O的半徑.

查看答案和解析>>

同步練習(xí)冊答案