【題目】正多邊形的一個內角的度數(shù)恰好等于它的外角的度數(shù)的3倍,則這個多邊形的邊數(shù)為__

【答案】8

【解析】試題分析:首先設正多邊形的一個外角等于,由在正多邊形中,一個內角的度數(shù)恰好等于它的外角的度數(shù)的3倍,即可得方程:x+3x=180,解此方程即可求得答案.

試題解析:設正多邊形的一個外角等于,

一個內角的度數(shù)恰好等于它的外角的度數(shù)的3倍,

這個正多邊形的一個內角為:3x°

∴x+3x=180,

解得:x=45,

這個多邊形的邊數(shù)是:360°÷45°=8

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】已知反比例函數(shù)y=的圖象的一支位于第一象限.

(1)判斷該函數(shù)圖象的另一支所在的象限,并求m的取值范圍;

(2)如圖,O為坐標原點,點A在該反比例函數(shù)位于第一象限的圖象上,點B與點A關于x軸對稱,若OAB的面積為10,求m的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一個零件的形狀如圖所示,按規(guī)定∠A=90,∠C=25∠B=25,檢驗員已量得∠BDC=150,請問:這個零件合格嗎?說明理由。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一枚運載火箭從地面L處發(fā)射,當火箭到達A點時,從位于距發(fā)射架底部4km處的地面雷達站R(LR=4)測得火箭底部的仰角為43°.1s后,火箭到達B點,此時測得火箭底部的仰角為45.72°.這枚火箭從A到B的平均速度是多少 (結果取小數(shù)點后兩位)?

(參考數(shù)據(jù):sin43°≈0.682,cos43°≈0.731,tan43°≈0.933,

sin45.72°≈0.716,cos45.72°≈0.698,tan45.72°≈1.025)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC中,AB=AC,BEACE,且DE分別是AB、AC的中點.延長BC至點F,使CF=CE

1)求ABC的度數(shù);

2)求證:BE=FE;

3)若AB=2,求CEF的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如果一個多邊形的內角和是外角和的3倍還多180°,那么這個多邊形有多少條邊?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,定義:在直角三角形ABC中,銳角α的鄰邊與對邊的比叫做角α的余切,記作ctanα,即ctanα==,根據(jù)上述角的余切定義,解下列問題:

(1)如圖1,若BC=3,AB=5,則ctanB= ;

(2)ctan60°= ;

(3)如圖2,已知:ABC中,B是銳角,ctan C=2,AB=10,BC=20,試求B的余弦cosB的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】先閱讀材料,再結合要求回答問題

【問題情景】

如圖:在四邊形ABCD中,ABADBADC90°E,F分別是BCCD上的點,且線段BE,EF,FD滿足BEFDEF探究圖中EAFBAD之間的數(shù)量關系.

【初步思考】

小王同學探究此問題的方法是延長FDG,使DGBE,連結AG

先證明ABE≌△ADG,再證明AEF≌△AGF,

可得出EAFBAD之間的數(shù)量關系

【探索延伸】

將問題情景中條件BADC90°改為BD180°如圖),其余條件不變,請判斷上述數(shù)量關系是否仍然成立,若成立,請證明;若不成立,請說明理由

【實際應用】

如圖,在某次軍事演習中,艦艇甲在指揮中心(O)北偏西30°A處,艦艇乙在指揮中心南偏東70°B處,并且兩艦艇到指揮中心的距離相等.接到行動指令后,艦艇甲向正東方向以60海里/小時的速度前進,艦艇乙沿北偏東50°的方向以80海里/小時的速度前進,1.5小時后,指揮中心觀測到甲、乙兩艦艇分別到達E,F處且相距210海里.試求此時兩艦艇的位置與指揮中心(O處)形成的夾角EOF的大小

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算

1a×a3×﹣a23

2)(1+2×﹣23π﹣30

3)(﹣0.2511×﹣412

4)(﹣2a22×a4﹣5a42

5)(x﹣y6÷y﹣x3×x﹣y2

6314×7

查看答案和解析>>

同步練習冊答案