【題目】已知函數(shù)軸交與,兩點,與軸交與點,則能使是直角三角形的拋物線條數(shù)是(

A. 0 B. 1 C. 2 D. 3

【答案】B

【解析】

首先求出拋物線與坐標(biāo)軸的交點坐標(biāo)然后利用勾股定理求出ABBC的長,再次根據(jù)△ABC是直角三角形,利用勾股定理列出n的一元二次方程求出n的值即可

y=(xn)(x3)=0,解得x=nx=3

假設(shè)3n,A30),Bn0),x=0y=3n,C點坐標(biāo)為(03n),根據(jù)圖形知CB2=9+9n2,AC2=n2+9n2,AB2=(3n2,根據(jù)題意知△ABC是直角三角形,BC2+AC2=AB2,整理得9+9n2+n2+9n2=96n+n2,18n2+6n=0解得n=0n=﹣

當(dāng)n=0,這樣的拋物線不滿足題意,n=﹣,所以能使△ABC是直角三角形的拋物線條數(shù)是1

故選B

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在如圖所示的正方形網(wǎng)格中,每個小正方形的邊長為1,格點三角形(頂點是網(wǎng)格線的交點的三角形)ABC的頂點A,C的坐標(biāo)分別為(﹣4,5),(﹣1,3).

(1)請在如圖所示的網(wǎng)格平面內(nèi)作出平面直角坐標(biāo)系;并寫出B點坐標(biāo);

(2)請作出△ABC關(guān)于y軸對稱的△A'B'C';

(3)請作出將△ABC向下平移的3個單位,再向右平移5個單位后的△A1B1C1;則點A1的坐標(biāo)為_____;點B1的坐標(biāo)為______,

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,剪兩張對邊平行且寬度相等的紙條隨意交叉疊放在一起,轉(zhuǎn)動其中一張,重合部分構(gòu)成一個四邊形,則下列結(jié)論中不一定成立的是( 。

A. ABC=ADC,BAD=BCD B. AB=BC

C. AB=CD,AD=BC D. DAB+BCD=180°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小迪同學(xué)在學(xué)勾股定理時發(fā)現(xiàn)一類特殊三角形:在一個三角形中,如果一個角是另一個角的2倍,那么稱這個三角形為倍角三角形”.

如圖1,在倍角中,、、的對邊分別記為,,,三角形的三邊,,有什么關(guān)系呢?讓我們一起來探索……

1)已知倍角三角形的一個內(nèi)角為,則這個三角形的另兩個角的度數(shù)分別為______

2)小迪同學(xué)先從特殊的倍角三角形入手研究,請你結(jié)合圖2和圖3填寫下表:

三角形

角的已知量

2

______

______

3

______

小迪同學(xué)根據(jù)上表,提出一般性猜想:在倍角三角形中,,那么,三邊滿足:______;

3)如圖1:在倍角三角形中,,、、的對邊分別記為,,求證:.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,中,,已知,相交于點,相交于點相交于點.

1)如圖,觀察并猜想有怎樣的數(shù)量關(guān)系?并說明理由.

2)箏形的定義:兩組鄰邊分別相等的四邊形叫做箏形. 如上圖,證明四邊形是箏形.

3)如圖,若,其他條件不變,求的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC中,AB=AC,BAC=),將線段BC繞點B逆時針旋轉(zhuǎn)60°得到線段BD。

1)如圖1,直接寫出ABD的大小(用含的式子表示);

2)如圖2,BCE=150°ABE=60°,判斷ABE的形狀并加以證明;

3)在(2)的條件下,連結(jié)DE,若DEC=45°,求的值。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知點在拋物線上.

,,求的值;

若此拋物線經(jīng)過點,且二次函數(shù)的最小值是,請畫出點的縱坐標(biāo)隨橫坐標(biāo)變化的圖象,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,是等邊三角形,點、分別在、上,且,、相交于點,連接,則下列結(jié)論:①;②;③;④,正確的結(jié)論有( )

A. 4個 B. 3個 C. 2個 D. 1個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,點的中點,且交于點,求證:的中位線.

查看答案和解析>>

同步練習(xí)冊答案