【題目】如圖,是等邊三角形,點(diǎn)、分別在、上,且,,、相交于點(diǎn),連接,則下列結(jié)論:①;②;③;④,正確的結(jié)論有( )
A. 4個(gè) B. 3個(gè) C. 2個(gè) D. 1個(gè)
【答案】A
【解析】
本題是開(kāi)放題,對(duì)結(jié)論進(jìn)行一一論證,從而得到答案.
①利用△ABD≌△BCE,再用三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角和,即可證∠AFE=60°;
②從CD上截取CM=CE,連接EM,證△CEM是等邊三角形,可證明DE⊥AC;
③△BDF∽△ADB,由相似比則可得到CE2=DFDA;
④只要證明了△AFE∽△BAE,即可推斷出AFBE=AEAC.
∵△ABC是等邊三角形,
∴AB=BC=AC,∠BAC=∠ABC=∠BCA=60°.
∵BD=BC,CE=AC,
∴BD=EC.
∴△ABD≌△BCE.
∴∠BAD=∠CBE,
∵∠ABE+∠EBD=60°,
∴∠ABE+∠CBE=60°.
∵∠AFE是△ABF的外角,
∴∠AFE=60°.
∴①是對(duì)的;
如圖,從CD上截取CM=CE,連接EM,則△CEM是等邊三角形,
∴EM=CM=EC.
∵EC=CD,
∴EM=CM=DM.
∴∠CED=90°.
∴DE⊥AC,
∴②是對(duì)的;
由前面的推斷知△BDF∽△ADB.
∴BD:AD=DF:DB.
∴BD2=DFDA.
∴CE2=DFDA.
∴③是對(duì)的;
在△AFE和△BAE中,∠BAE=∠AFE=60°,∠AEB是公共角
∴△AFE∽△BAE.
∴AFBE=AEAC.
∴④是正確的.
故答案選A.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在中,,.
(1)如圖1,若直線與相交于,過(guò)點(diǎn)作于,連接并延長(zhǎng)至,使得,過(guò)點(diǎn)作于,證明:.
(2)如圖2,若直線與的延長(zhǎng)線相交于,過(guò)點(diǎn)作于,連接并延長(zhǎng)至,使得,過(guò)點(diǎn)作交的延長(zhǎng)線于,探究:、、之間的數(shù)量關(guān)系,并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)與軸交與,兩點(diǎn),與軸交與點(diǎn),則能使是直角三角形的拋物線條數(shù)是( )
A. 0 B. 1 C. 2 D. 3
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校為美化校園,計(jì)劃對(duì)面積為的區(qū)域進(jìn)行綠化,安排甲、乙兩個(gè)工程隊(duì)完成.已知甲隊(duì)每天能完成綠化的面積是乙隊(duì)每天能完成綠化的面積的2倍,并且在獨(dú)立完成面積為區(qū)域的綠化時(shí),甲隊(duì)比乙隊(duì)少用4天。
(1)求甲、乙兩工程隊(duì)每天能完成綠化的面積分別是多少?
(2)若學(xué)校每天需付給甲隊(duì)的綠化費(fèi)用為0.35萬(wàn)元,乙隊(duì)為0.25萬(wàn)元,要使這次的綠化總費(fèi)用不超過(guò)8萬(wàn)元,至少應(yīng)安排甲隊(duì)工作多少天?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于的一元二次方程
若方程的一個(gè)根為,求的值及另一個(gè)根;
若該方程根的判別式的值等于,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】二次函數(shù),則下列說(shuō)法正確的是( )
A. 圖象的開(kāi)口向下 B. 函數(shù)的最小值為
C. 圖象的對(duì)稱軸為直線 D. 當(dāng)時(shí),隨的增大而增大
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖(1),一架云梯AB斜靠在一豎直的墻上,云梯的頂端A距地面15米,梯子的長(zhǎng)度比梯子底端B離墻的距離大5米.
(1)這個(gè)云梯的底端B離墻多遠(yuǎn)?
(2)如圖(2),如果梯子的頂端下滑了8m(AC的長(zhǎng)),那么梯子的底部在水平方向右滑動(dòng)了多少米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,點(diǎn)是線段的中點(diǎn),,.
(1)如圖1,若,求證是等邊三角形;
(2)如圖1,在(1)的條件下,若點(diǎn)在射線上,點(diǎn)在點(diǎn)右側(cè),且是等邊三角形,的延長(zhǎng)線交直線于點(diǎn),求的長(zhǎng)度;
(3)如圖2,在(1)的條件下,若點(diǎn)在線段上,是等邊三角形,且點(diǎn)沿著線段從點(diǎn)運(yùn)動(dòng)到點(diǎn),點(diǎn)隨之運(yùn)動(dòng),求點(diǎn)的運(yùn)動(dòng)路徑的長(zhǎng)度.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com