【題目】已知雙曲線在第一象限內(nèi)交于,兩點,,則扇形的面積是________

【答案】

【解析】

設(shè)⊙O的半徑OA=OB=r,連接AB,作直線y=x,與AB交于點C,示、過AADy軸于點D,過BBEx軸于點E,過AAFOB于點F.由圓與雙曲線的對稱性得△AOD≌△AOC≌△BOC≌△BOE,進而由反比例函數(shù)的比例系數(shù)的幾何意義得△AOB的面積,再由三角形的面積公式求得圓的半徑,最后由扇形的面積公式求得結(jié)果.

設(shè)⊙O的半徑OA=OB=r,連接AB,作直線y=x,與AB交于點C,示、過AADy軸于點D,過BBEx軸于點E,過AAFOB于點F


∵⊙O在第一象限關(guān)于y=x對稱,k0)也關(guān)于y=x對稱,

∴∠AOC=BOCOCAB,∠AOD=BOE,

∵∠AOB=45°,

∴∠AOD=AOC=BOC=BOE=22.5°,

由對稱性知,△AOD≌△AOC≌△BOC≌△BOE

由反比例函數(shù)的幾何意義知,,

SAOC=SBOC=1,

SAOB=1+1=2,

∵∠AOB=45°,

,

,

,

,

故答案為:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系中拋物線y=(x+1)(x3)與x軸相交于A、B兩點,若在拋物線上有且只有三個不同的點C1、C2、C3,使得ABC1ABC2、ABC3的面積都等于m,則m的值是( 。

A. 6 B. 8 C. 12 D. 16

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如今很多初中生喜歡購頭飲品飲用,既影響身體健康又給家庭增加不必要的開銷,為此某班數(shù)學(xué)興趣小組對本班同學(xué)一天飲用飲品的情況進行了調(diào)查,大致可分為四種:A.白開水,B.瓶裝礦泉水,C.碳酸飲料,D.非碳酸飲料.根據(jù)統(tǒng)計結(jié)果繪制如下兩個統(tǒng)計圖,根據(jù)統(tǒng)計圖提供的信息,解答下列問題

1)這個班級有多少名同學(xué)?并補全條形統(tǒng)計圖;

2)若該班同學(xué)每人每天只飲用一種飲品(每種僅限一瓶,價格如下表),則該班同學(xué)每天用于飲品的人均花費是多少元?

飲品名稱

白開水

瓶裝礦泉水

碳酸飲料

非碳酸飲料

平均價格(元/瓶)

0

2

3

4

3)為了養(yǎng)成良好的生活習(xí)慣,班主任決定在飲用白開水的5名班委干部(其中有兩位班長記為AB,其余三位記為C,D,E)中隨機抽取2名班委干部作良好習(xí)慣監(jiān)督員,請用列表法或畫樹狀圖的方法求出恰好抽到2名班長的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD邊長為2,EAB的中點,以E為圓心,線段ED的長為半徑作半圓,交直線AB于點M,N,分別以線段MD,ND為直徑作半圓,則圖中陰影部分的面積為_____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:ABCADE是兩個不全等的等腰直角三角形,其中AB=AC,AD=AE

BAC=90°,∠DAE=90°

(1)觀察猜想

如圖1,連接BE、CD交于點H,再連接CE,那么BECD的數(shù)量關(guān)系和位置關(guān)系分別是

(2)探究證明

將圖1中的ABC繞點A逆時針旋轉(zhuǎn)到圖2的位置時,分別取BCCE、DE的中點P、M、Q,連接MP、PQ、MQ,請判斷MPMQ的數(shù)量關(guān)系和位置關(guān)系,并說明理由;

3)拓展延伸

已知AB=AD=4,在(2)的條件下,將ABC繞點A旅轉(zhuǎn)的過程中,若∠CAE=45°,請直接寫出此時線段PQ的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,的外接圓,過點的切線,交的延長線于點于點

1)求證:;

2)填空:

①若,________;

②連接,當的度數(shù)為________時,四邊形是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系中,矩形的頂點,軸的正半軸上,頂點在直線位于第一象限的圖像上,反比例函數(shù)的圖像經(jīng)過點,交于點,

1)如果,求點的坐標;

2)連接,當時,求點的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形的邊長為2,點邊上的一點,以為直徑在正方形內(nèi)作半圓,將沿著翻折,點恰好落在半圓上的點處,則的長為(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑AC是弦,∠BAC的平分線AD交⊙O于點D,DEACAC的延長線于點E,連接OE,OEAD于點F

1)求證:DE是⊙O的切線;

2)若,求的值;

查看答案和解析>>

同步練習(xí)冊答案