【題目】如圖,四邊形ABCD是邊長(zhǎng)為1的正方形,且DE,△ABF△ADE的旋轉(zhuǎn)圖形

1)旋轉(zhuǎn)中心是哪一點(diǎn)?

2)旋轉(zhuǎn)了多少度?

3AF的長(zhǎng)度是多少?

4)如果連結(jié)EF,那么△AEF是怎樣的三角形?

【答案】1)旋轉(zhuǎn)中心是點(diǎn)A;(2)順時(shí)針旋轉(zhuǎn)90°;(3.(4)等腰直角三角形.

【解析】試題(1)、(2)觀察圖形,由△ADE△ABF,可得出旋轉(zhuǎn)中心,旋轉(zhuǎn)角;

3)根據(jù)對(duì)應(yīng)邊AE=AF,FB=DE=,在RtABF中,使用勾股定理計(jì)算AF;

4)根據(jù)旋轉(zhuǎn)的性質(zhì),得到三角形中的邊、角之間的關(guān)系,進(jìn)行判斷.

試題解析:觀察圖形,由△ADE△ABF的旋轉(zhuǎn)可知:

1)旋轉(zhuǎn)中心是點(diǎn)A;

2)順時(shí)針旋轉(zhuǎn)90°;

3)由旋轉(zhuǎn)可知BF=DE=

由勾股定理得:AF=

4)等腰直角三角形.

由旋轉(zhuǎn)可知;AEAF是對(duì)應(yīng)邊,

∴AE=AF,∠EAF=90°,

△AEF是等腰直角三角形.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在Rt△ABC中,∠ACB=90°,∠A=45°,AB=4cm.點(diǎn)P從點(diǎn)A出發(fā),以2cm/s的速度沿邊AB向終點(diǎn)B運(yùn)動(dòng).過(guò)點(diǎn)PPQ⊥AB交折線ACB于點(diǎn)Q,DPQ中點(diǎn),以DQ為邊向右側(cè)作正方形DEFQ.設(shè)正方形DEFQ△ABC重疊部分圖形的面積是ycm2),點(diǎn)P的運(yùn)動(dòng)時(shí)間為xs).

1)當(dāng)點(diǎn)Q在邊AC上時(shí),正方形DEFQ的邊長(zhǎng)為 cm(用含x的代數(shù)式表示);

2)當(dāng)點(diǎn)P不與點(diǎn)B重合時(shí),求點(diǎn)F落在邊BC上時(shí)x的值;

3)當(dāng)0x2時(shí),求y關(guān)于x的函數(shù)解析式;

4)直接寫出邊BC的中點(diǎn)落在正方形DEFQ內(nèi)部時(shí)x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我們知道:有些代數(shù)恒等式可以利用平面圖形的面積來(lái)表示,如:

就可以用如圖所示的面積關(guān)系來(lái)說(shuō)明。

(1)請(qǐng)根據(jù)如圖寫出代數(shù)恒等式,并根據(jù)所寫恒等式計(jì)算:

(2)的值;

(3)現(xiàn)有如圖中的彩色卡片:A型、B型、C型,把這些卡片不重疊不留縫隙地貼在棱長(zhǎng)為100個(gè)立方體表面進(jìn)行裝飾,A型、B型、C型卡片的單價(jià)分別為0.7/張、0.5/張、0.4/張,共需多少費(fèi)用?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB是⊙O的直徑,AP是⊙O的切線,點(diǎn)A為切點(diǎn),BP與⊙O交于點(diǎn)C,點(diǎn)DAP的中點(diǎn),連結(jié)CD.

(1)求證:CD是⊙O的切線;

(2)若AB=2,P=30°,求陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀與理解

折紙,常常能為證明一個(gè)命題提供思路和方法.例如,在△ABC中,AB>AC(如圖),怎樣證明∠C>B呢?

AC沿∠A的角平分線AD翻折,因?yàn)?/span>AB>AC,所以點(diǎn)C落在AB上的點(diǎn)處,即,據(jù)以上操作,易證明,所以,又因?yàn)?/span>>B,所以∠C>B.

感悟與應(yīng)用

(1)如圖(a),在△ABC中,∠ACB=90°,B=30°,CD平分∠ACB,試判斷ACAD、BC之間的數(shù)量關(guān)系,并說(shuō)明理由;

(2)如圖(b),在四邊形ABCD中,AC平分∠BAD,AC=16,AD=8,DC=BC=12,

求證:∠B+D=180°;

AB的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知:E是∠AOB的平分線上一點(diǎn),EC⊥OB,ED⊥OA,C、D是垂足,連接CD,且交OE于點(diǎn)F.

(1)求證:OE是CD的垂直平分線.

(2)若∠AOB=60,請(qǐng)你探究OE,EF之間有什么數(shù)量關(guān)系?并證明你的結(jié)論。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在7×7網(wǎng)格中,每個(gè)小正方形的邊長(zhǎng)都為1.

(1)若點(diǎn)A1,3),C2,1), ①建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系;②點(diǎn)B的坐標(biāo)為( );

(2)判斷ABC的形狀,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩人用如圖所示的兩個(gè)分格均勻的轉(zhuǎn)盤做游戲:分別轉(zhuǎn)動(dòng)兩個(gè)轉(zhuǎn)盤,若轉(zhuǎn)盤停止后,指針指向一個(gè)數(shù)字(若指針恰好停在分格線上,則重轉(zhuǎn)一次),用所指的兩個(gè)數(shù)字作乘積,如果積大于10,那么甲獲勝;如果積不大于10,那么乙獲勝.清你解決下列問(wèn)題:

l)利用樹狀圖(或列表)的方法表示游戲所有可能出現(xiàn)的結(jié)果;

2)求甲、乙兩人獲勝的概率,并說(shuō)明游戲是否公平.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】A、B兩個(gè)港口,水由A流向B,水流的速度是4千米/小時(shí),甲、乙兩船同時(shí)由A順流駛向B,各自不停地在A、B之間往返航行,甲在靜水中的速度是28千米/小時(shí),乙在靜水中的速度是20千米/小時(shí).

設(shè)甲行駛的時(shí)間為t小時(shí),甲船距B港口的距離為S1千米,乙船距B港口的距離為S2千米,如圖為S1(千米)和t(小時(shí))函數(shù)關(guān)系的部分圖象

(1)A、B兩港口距離是_____千米.

(2)在圖中畫出乙船從出發(fā)到第一次返回A港口這段時(shí)間內(nèi),S2(千米)和t(小時(shí))的函數(shù)關(guān)系的圖象

(3)求甲、乙兩船第二次(不算開始時(shí)甲、乙在A處的那一次)相遇點(diǎn)M位于A、B港口的什么位置?

查看答案和解析>>

同步練習(xí)冊(cè)答案