【題目】閱讀與理解:
折紙,常常能為證明一個命題提供思路和方法.例如,在△ABC中,AB>AC(如圖),怎樣證明∠C>∠B呢?
把AC沿∠A的角平分線AD翻折,因為AB>AC,所以點C落在AB上的點處,即,據以上操作,易證明≌,所以,又因為>∠B,所以∠C>∠B.
感悟與應用:
(1)如圖(a),在△ABC中,∠ACB=90°,∠B=30°,CD平分∠ACB,試判斷AC和AD、BC之間的數量關系,并說明理由;
(2)如圖(b),在四邊形ABCD中,AC平分∠BAD,AC=16,AD=8,DC=BC=12,
① 求證:∠B+∠D=180°;
② 求AB的長.
【答案】(1)BC-AC=AD;(2)①見解析;②14;
【解析】
(1)在CB上截取CE=CA,連接DE.可證△ACD≌△ECD,得到DE=AD,∠A=∠CED=60°,進一步得到∠CED=2∠CBA,由外角的性質得到∠CBA=∠BDE,由等角對等邊得到DE=BE,即可得到結論.
(2)①在AB上截取AE=AD,連接EC.易證△CDA≌△CEA,從而得到∠CEA=∠D,CE=CD.由等量代換得到BC=CE,由等邊對等角得到∠B=∠CEB.再由鄰補角的性質即可得到結論;
②過C作CF⊥AB于F.設FB=x,CF=h.由等腰三角形三線合一得到FE=BF=x.在Rt△BFC和Rt△FCA中,分別利用勾股定理列方程,求解即可.
(1)BC-AC=AD.理由如下:
如圖,在CB上截取CE=CA,連接DE.
∵CD平分∠ACB,同理可證△ACD≌△ECD,∴DE=AD,∠A=∠CED=60°.
∵∠ACB=90°,∴∠CBA=30°,∴∠CED=2∠CBA.
∵∠CED=∠CBA+∠BDE,∴∠CBA=∠BDE,∴DE=BE,∴AD=BE.
∵BE=BC-CE=BC-AC,∴BC-AC=AD.
(2)①在AB上截取AE=AD,連接EC.
∵AC平分∠DAB,∴∠EAC=∠DAC.在△CDA和△CEA中,∵EA=DA,∠EAC=∠DAC,AC=AC,∴△CEA≌△CDA,∴∠CEA=∠D,CE=CD.
∵DC=BC,∴BC=CE,∴∠B=∠CEB.
∵∠CEA+∠CEB=180°,∴∠B+∠D=180°;
②過C作CF⊥AB于F.設FB=x,CF=h.
∵CB=CE,CF⊥BE,∴FE=BF=x.在Rt△BFC中,∵BF2+CF2=BC2,∴①;在Rt△FCA中,②;解方程組①②得:x=3.∴AB=BF+FE+EA=2×3+8=14.
科目:初中數學 來源: 題型:
【題目】下圖是由邊長為1個單位長度的小正方形組成的網格,線段AB的端點在格點上.
(1)請建立適當的平面直角坐標系xOy,使得A點的坐標為(-3,-1),在此坐標系下,B點的坐標為________________;
(2)將線段BA繞點B逆時針旋轉90°得線段BC,畫出BC;在第(1)題的坐標系下,C點的坐標為__________________;
(3)在第(1)題的坐標系下,二次函數y=ax2+bx+c(a≠0)的圖象過O、B、C三點,則此函數圖象的對稱軸方程是________________.
【答案】 (-1,2) (2,0) x=1
【解析】分析:根據點的坐標建立坐標系,即可寫出點的坐標.
畫出點旋轉后的對應點連接,寫出點的坐標.
用待定系數法求出函數解析式,即可求出對稱軸方程.
詳解:(1)建立坐標系如圖,
B點的坐標為;
(2)線段BC如圖,C點的坐標為
(3)把點代入二次函數,得
解得:
二次函數解析為:
對稱軸方程為:
故對稱軸方程是
點睛:考查圖形與坐標;旋轉、對稱變換;待定系數法求二次函數解析式,二次函數的圖象與性質.熟練掌握各個知識點是解題的關鍵.
【題型】解答題
【結束】
18
【題目】特殊兩位數乘法的速算——如果兩個兩位數的十位數字相同,個位數字相加為10,那么能立說出這兩個兩位數的乘積.如果這兩個兩位數分別寫作AB和AC(即十位數字為A,個位數字分別為B、C,B+C=10,A>3),那么它們的乘積是一個4位數,前兩位數字是A和(A+1)的乘積,后兩位數字就是B和C的乘積.
如:47×43=2021,61×69=4209.
(1)請你直接寫出83×87的值;
(2)設這兩個兩位數的十位數字為x(
(3)99991×99999=___________________(直接填結果)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】“端午節(jié)”是我國的傳統佳節(jié),民間歷來有吃“粽子”的習俗,我市某食品廠為了解市民對去年銷售量較好的肉餡粽、豆沙粽、紅棗粽、蛋黃餡粽(以下分別用A、B、C、D表示這四種不同口味粽子的喜愛情況,在節(jié)前對某居民區(qū)市民進行了抽樣調查,并將調查結果繪制成如下兩幅統計圖.請根據以上信息回答:
(1)本次參加抽樣調查的居民有多少人?
(2)將不完整的條形圖補充完整.
(3)若居民區(qū)有8000人,請估計愛吃D粽的人數?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】黃巖島自古以來就是中國的領土,如圖,為維護海洋利益,三沙市一艘海監(jiān)船在黃巖島附近海域巡航,某一時刻海監(jiān)船在A處測得該島上某一目標C在它的北偏東45°方向,海監(jiān)船沿北偏西30°方向航行60海里后到達B處,此時測得該目標C在它的南偏東75方向,求此時該船與目標C之間的距離CB的長度,(結果保留根號)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某市為節(jié)約水資源,制定了新的居民用水收費標準.按照新標準,用戶每月繳納的水費y(元)與每月用水量x(m3)之間的關系如圖所示.
(1)求y關于x的函數解析式;
(2)若某用戶二、三月份共用水40m3(二月份用水量不超過25m3),繳納水費79.8元,則該用戶二、三月份的用水量各是多少m3?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,四邊形ABCD是邊長為1的正方形,且DE=,△ABF是△ADE的旋轉圖形
(1)旋轉中心是哪一點?
(2)旋轉了多少度?
(3)AF的長度是多少?
(4)如果連結EF,那么△AEF是怎樣的三角形?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在△ABC中,AB=CB,∠ABC=90°,F為AB延長線上一點,點E在線段BC上,且AE=CF,連接EF.
(1)如圖,已知線段AB,請補全圖形,畫出符合題意的圖形.
(2)求證:BE=BF.
(3)若∠EAC=30°,則∠CFE是多少度?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:如圖, AB是⊙O的直徑,AM和BN是⊙O的兩條切線,點D是AM上一點,聯結OD , 作BE∥OD交⊙O于點E, 聯結DE并延長交BN于點C.
(1)求證:DC是⊙O的切線;
(2)若AD=l,BC=4,求直徑AB的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(3分)如圖,AD是△ABC的角平分線,DE⊥AC,垂足為E,BF∥AC交ED的延長線于點F,若BC恰好平分∠ABF,AE=2BF.給出下列四個結論:①DE=DF;②DB=DC;③AD⊥BC;④AC=3BF,其中正確的結論共有( )
A. 4個 B. 3個 C. 2個 D. 1個
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com